Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Universal calibration hydrodynamic volume

An interesting outgrowth of these considerations is the idea that In r versus K or Vj should describe a universal calibration curve in a particular column for random coil polymers. This conclusion is justified by examining Eq. (9.55), in which the product [i ]M is seen to be proportional to (rg ), with r = a(rg 0 ) - This suggests that In rg in the theoretical calibration curve can be replaced by ln[r ]M. The product [r ]M is called the hydrodynamic volume, and Fig. 9.17 shows that the calibration curves for a variety of polymer types merge into a single curve when the product [r ]M, rather than M alone, is used as the basis for the cafibration. [Pg.649]

The most widely used molecular weight characterization method has been GPC, which separates compounds based on hydrodynamic volume. State-of-the-art GPC instruments are equipped with a concentration detector (e.g., differential refractometer, UV, and/or IR) in combination with viscosity or light scattering. A viscosity detector provides in-line solution viscosity data at each elution volume, which in combination with a concentration measurement can be converted to specific viscosity. Since the polymer concentration at each elution volume is quite dilute, the specific viscosity is considered a reasonable approximation for the dilute solution s intrinsic viscosity. The plot of log[r]]M versus elution volume (where [) ] is the intrinsic viscosity) provides a universal calibration curve from which absolute molecular weights of a variety of polymers can be obtained. Unfortunately, many reported analyses for phenolic oligomers and resins are simply based on polystyrene standards and only provide relative molecular weights instead of absolute numbers. [Pg.385]

Compare molecular size/weight characteristics of branched and linear species eluting at V in each chromatogram. Under the universal calibration formalism branched and linear components have the same hydrodynamic volume at V ... [Pg.108]

Figure 19. Universal calibration curves for GPC 1 and GPC 2 based on hydrodynamic volume in GPC 1 (Vthf) (J) 100% THF (B3, Table I) obtained by sampling narrow standards infected into GPC 1 (A3, Table I) (2) 57% n-heptane in THF (B4, Table 1) (obtained as in 1 above) (3) 57% n-heptane in THF (B4, Table 1), obtained by direct injection into GPC 2 (4) 62% n-heptane in THF (B5, Table 1) (obtained as in 3 above) (5) 100% THF (A3, Table I), obtained by sampling GPC 1 (NBS706, 0.375 and 0.750 mg into GPC 1 and... Figure 19. Universal calibration curves for GPC 1 and GPC 2 based on hydrodynamic volume in GPC 1 (Vthf) (J) 100% THF (B3, Table I) obtained by sampling narrow standards infected into GPC 1 (A3, Table I) (2) 57% n-heptane in THF (B4, Table 1) (obtained as in 1 above) (3) 57% n-heptane in THF (B4, Table 1), obtained by direct injection into GPC 2 (4) 62% n-heptane in THF (B5, Table 1) (obtained as in 3 above) (5) 100% THF (A3, Table I), obtained by sampling GPC 1 (NBS706, 0.375 and 0.750 mg into GPC 1 and...
Figure 19 shows the Universal Calibration Curve obtained for the coupled GPCs in terms of the hydrodynamic volume in THF (Ref Table II). The addition of the n-Heptane caused a dramatic shift downstream of the polystyrene standards. [Pg.175]

Branching in the polymer chain affects the relationship between retention and molecular weight.83 Universal calibration has been used with some success in branched polymers, but there are also pitfalls. Viscosimetry84-91 and other instrumental methods have proved to be useful. A computer simulation of the effects of branching on hydrodynamic volume and the detailed effects observable in GPC is available in the literature.92 93 In copolymer analysis, retention may be different for block and random copolymers, so universal calibration may be difficult. However, a UV-VIS detector, followed by a low-angle light-scattering (LALLS) detector and a differential... [Pg.330]

Our system provides for several forms of calibration function, but we generally use "universal" calibration (5) and represent the dependence of the logarithm of hydrodynamic volume on retention volume by a polynomial, as in Figure 6. Note that the slope of the function changes dramatically near the ends of the range of applicability. The calibrants at the ends of the range exert a dramatic influence on the form of the fitted polynomial. This behavior demonstrates that the column set must be carefully chosen to fractionate the desired range of molecular sizes. [Pg.137]

For some polymers, like polystyrene or poly(methyl methacrylate), narrow standards of known molar mass and small polydispersity are commercially available, which can be used for calibration. Unfortunately, such standards are not available for all polymers and then the obtained true molar masses of a specific polymer might differ by a factor of two from the value obtained by calibration with, e.g., polystyrene [30] (see Section 9.1). This problem can be resolved by the so-called universal calibration, which is based on the finding that the retention volume of a polymer is a single-valued function of the hydrodynamic volume of the polymer, irrespective of its chemical nature and... [Pg.229]

A direct consequence of the development of hydrodynamic volume theory In SEC has been the universal calibration method as introduced by Benoit (17). Universal calibration methodology is based upon the fact that retention in SEC can be described as a function of the hydrodynamic volume of polymer molecules. [Pg.76]

Usually the function [Cn) M] (intrinsic viscosity times molecular weight) is used to represent hydrodynamic volume which is plotted versus elution volume. For such a plot the calibration curves of many polymers fall on the same line irrespective of polymer chemical type. Universal calibration methodology usually requires knowledge of Mark-Houwink constants for the polymer/ temperature/solvent system under study. [Pg.77]

Consequently, a relatively low molecular weight polymer (MM=1.39x 10 ) has an intrinsic viscosity (25.6 dl/g) equivalent to a PS or PDMS more than lOx higher in MW. (Earlier GPC work on PBIC (9) and PHIC (7) had shown no deviations from the universal calibration curve for GPC at high molecular weights). The primary role of chain flexibility in GPC degradation rather than simple molecular hydrodynamic volume is conclusively shown by these results. [Pg.233]

From the primary calibration curve based on polystyrene standards and the Mark-Houwink constants for polystyrene (K,a) a universal calibration curve (Z vs. v), based on hydrodynamic volume is constructed. Z is calculated from... [Pg.285]

The universal calibration approach ([n]. M vs elution volume) for polystyrene standards and narrow molecular triacetate fractions show slight deviation from linearity. This departure from linearity has been attributed to differences in both hydrodynamic behavior and the Mark-Houwink exponent a for the two polymers in question. [Pg.365]

Universal Calibration. A function of the hydrodynamic volume [r ] M was plotted against the elution volumes of cellulose triacetate fractions and polystyrene standards run in dichloromethane have all indicated slight deviation from linearity as shown in Figure 2. [Pg.369]

Benoit and co-workers [18] proposed that the hydrodynamic volume, Vr which is proportional to the product of [17] and M, where [17] is the intrinsic viscosity of the polymer in the SEC eluent, may be used as the universal calibration parameter (Fig. 18.3). For linear polymers, interpretation in terms of molecular weight is straightforward. If the Mark-Houwink-Sakurada constants K and a are known, log [t7]M can be written log M1+ + log K, and VT can be directly related to M. The size-average molecular weight, Mz, is defined by this process ... [Pg.142]

Considering the derivations of equation (1), it can be predicted that all molecules having the same value of [rj M would have the same value of Vh, the hydrodynamic volume. Also, if v/, is the parameter that uniquely determines the elution volume, Ve, these molecules should have the same elution volume. The arguments presented by these authors do not predict that the relationship between these parameters should necessarily be linear. Most universal calibration curves shown in the literature that cover 4 to 6 decades of M show a definite upward curvature at high values of M (28). [Pg.92]

Table II. Viscometric and GPC Weight Average Molecular Weight Data Using the Hydrodynamic Volume (Universal Calibration Model)... Table II. Viscometric and GPC Weight Average Molecular Weight Data Using the Hydrodynamic Volume (Universal Calibration Model)...
Since size exclusion chromatography separates polymer molecules by their size (especially hydrodynamic size), plotting the molecular size vs. the retention volume should be universal, regardless of the polymer molecular weight. The universal calibration curve is given as ... [Pg.440]

For determining the molar mass of branched polymers gel permeation chromatography can be used. An important quantity in this connection is the hydrodynamic volume of the polymer coil, which, as shown before in Eq. (9.27), is proportional to the product [rj M. According to Benoit and co-workers (1966) the hydrodynamic volume is the key size parameter in the establishment of a universal calibration curve for gel permeation chromatography columns (see Chap. 2) if log (h/]M) is plotted versus the elution volume for a variety of polymers, the data fit a single curve. [Pg.274]

It is clear that the interpolation between the calibration lines cannot be applied to mixtures of polymers (polymer blends). If the calibration lines are different, different molar masses of the homopolymers will elute at the same volume. The universal calibration is also not capable of eliminating the errors which originate from the simultaneous elution of two polymer fractions with the same hydrodynamic volume, but different composition and molar mass. Ogawa [33] has shown by a simulation technique that the molar masses of polymers eluting at the elution volume Ve are given by the corresponding coefficients K and a in the Mark-Houwink equation. [Pg.12]

Studies of GPC separations have shown that polymers appear in the eluatc in inverse order of their hydrodynamic volumes in the particular solvent. This forms the basis of a universal calibration method since Eq. (3-37) is equivalent to... [Pg.107]

Note that the universal calibration relations apply to polymeric solutes in very dilute solutions. The component species of whole polymers do indeed elute effectively at zero concentration but sharp distribution fractions will be diluted much less as they move through the GPC columns. Hydrodynamic volumes of solvated polymers are inversely related to concentration and thus elution volumes may depend on the concentration as well as on the molecular weights of the calibration samples. To avoid this problem, the calibration curve can be set up in terms of hydrodynamic volumes rather than molecular weights. A general relation [20] is... [Pg.108]

Fig. 3 11. Universal calibration relation in terms of hydrodynamic volume V and elution volume. Fig. 3 11. Universal calibration relation in terms of hydrodynamic volume V and elution volume.
Equation (3-39) links the intrinsic viscosity of a polymer sample to the radii of gyration / g of its molecules while Eq. (3-72) relates the hydrodynamic volume V of a solvated molecule to the product of its molecular weight and intrinsic viscosity. The separation process in GPC is on the basis of hydrodynamic volume, and the universal calibration described in Section 3.4.3 is valid only if the relation between V and r-g is the same for the calibration standards and the unknown samples. [Pg.111]

Figure 1. Universal calibration plot of polystyrene standards dissolved in DMAC-LiCl. (Log MJ XIV is hydrodynamic volume, where M is molecular weight and IV is intrinsic viscosity. Figure 1. Universal calibration plot of polystyrene standards dissolved in DMAC-LiCl. (Log MJ XIV is hydrodynamic volume, where M is molecular weight and IV is intrinsic viscosity.

See other pages where Universal calibration hydrodynamic volume is mentioned: [Pg.856]    [Pg.1883]    [Pg.784]    [Pg.143]    [Pg.743]    [Pg.336]    [Pg.141]    [Pg.296]    [Pg.62]    [Pg.80]    [Pg.453]    [Pg.472]    [Pg.105]    [Pg.264]    [Pg.75]    [Pg.440]    [Pg.37]    [Pg.270]    [Pg.102]    [Pg.111]    [Pg.8]    [Pg.201]    [Pg.741]    [Pg.755]   


SEARCH



Calibration hydrodynamic volume

Calibration universal

Hydrodynamic volume

Volume calibration

© 2024 chempedia.info