Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrasound pulse-propagation

Another example of a relatively new technique for the noninvasive, nondestructive characterization of network structures involves ultrasound pulse-propagation measurements. The goal here is the rapid determi-... [Pg.72]

Then, the weld depths penetration are controlled in a pulse-echo configuration because the weld bead (of width 2 mm) disturbs the detection when the pump and the probe beams are shifted of 2.2 mm. The results are presented in figure 8 (identical experimental parameters as in figure 7). The slow propagation velocities for gold-nickel alloy involve that the thermal component does not overlap the ultrasonic components, in particular for the echo due to the interaction with a lack of weld penetration. The acoustic response (V shape) is still well observed both for the slot of height 1.7 mm and for a weld depth penetration of 0.8 mm (lack of weld penetration of 1.7 mm), even with the weld bead. This is hopeful with regard to the difficulties encountered by conventional ultrasound in the case of the weld depths penetration. [Pg.698]

Sherar, M. D., Noss, M. B., and Foster, F. S. (1987). Ultrasound backscatter microscopy images the internal structure of living tumour spheroids. Nature 330,493-5. [174] Shimada, H. (1987). Propagation of multi-mode ultrasonic pulses in non-destructive material evaluation. In Ultrasonic spectroscopy and its application to Materials science (ed. Y. Wada), pp. 50-6. Ministry of Education, Science and Culture, Japan. [148] Shotton, D. M. (1989). Confocal scanning optical microscopy and its applications for biological specimens. J. Cell. Sci. 94,175-206. [177,200]... [Pg.341]

In practice ultrasound is usually propagated through materials in the form of pulses rather than continuous sinusoidal waves. Pulses contain a spectrum of frequencies, and so if they are used to test materials that have frequency dependent properties the measured velocity and attenuation coefficient will be average values. This problem can be overcome by using Fourier Transform analysis of pulses to determine the frequency dependence of the ultrasonic properties. [Pg.96]

Ultrasound imaging is a non-invasive, portable and relatively inexpensive imaging modality, which is used extensively in the clinic. An ultrasound transducer (also called scanhead) sends short pulses of a high-frequency sound wave (1-10 MHz) into the body. At interfaces between two types of tissue, the wave will be refracted and part of the sound wave is reflected back due to Snells law. How much is reflected depends on the densities of the respective tissues, and thus the speed of the sound wave within the different tissues. In addition, parts of the sound wave are also backscattered from small structures at tissue boundaries or within the tissue. High-frequency sound waves propagate weU through soft tissue and fluids, but they are more or less stopped by air or bone. In clinical practice, this limitation is referred to as an acoustic window . The transducer not only sends the wave into the body but also receives part of the reflected and/or backscattered wave, also named echo . In clinical practice, ultrasound is used in a... [Pg.1218]

Interaction between ultrasound and tissue can be characterized by a number of parameters like speed of propagation, attenuation, absorption coefficients etc. As ultrasound velocity is characteristic for a particular tissue the possibility is opened for ultrasound velocity tomography. The principles hereof and implications for medicine have been described by Greenleaf et al. (1975). In ultrasound velocity tomography transmitters and receivers are positioned around the object under study. Times of flight of ultrasonic pulses from transmitter to receiver are measured accurately. By rotating the transmitters and receivers in a plane around... [Pg.191]

With ultrasound velocity tomography the local speed of ultrasound in a cross section of the subject under study is computed from a large set of ultrasound transmission times. These calculations (reconstructions) are based upon a model that describes the propagation of ultrasound in a medium. In its simplest form the ultrasonic pulses are supposed to travel along straight pathways from transmitter to receiver. The measured transmission times depends on the velocity distribution v(jc, y) in the plane of reconstruction ... [Pg.193]

The cure of an epichlorohydrin-bisphenol A resin and curing agent containing a primary diamine and an amido-polyamine was studied using two complementary techniques, low resolution pulsed NMR spectroscopy and measurement of pulsed broad bandwidth ultrasound propagation velocity and absorption changes. The two... [Pg.105]


See other pages where Ultrasound pulse-propagation is mentioned: [Pg.5]    [Pg.5]    [Pg.52]    [Pg.434]    [Pg.219]    [Pg.10]    [Pg.99]    [Pg.104]    [Pg.816]    [Pg.37]    [Pg.393]    [Pg.126]    [Pg.71]    [Pg.606]    [Pg.292]    [Pg.1058]    [Pg.102]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Pulse-propagation

© 2024 chempedia.info