Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultra conditions

Ultra-high vacuum (UHV) surface science methods allow preparation and characterization of perfectly clean, well ordered surfaces of single crystalline materials. By preparing pairs of such surfaces it is possible to fonn interfaces under highly controlled conditions. Furthennore, thin films of adsorbed species can be produced and characterized using a wide variety of methods. Surface science methods have been coupled with UHV measurements of macroscopic friction forces. Such measurements have demonstrated that adsorbate film thicknesses of a few monolayers are sufficient to lubricate metal surfaces [12, 181. [Pg.2747]

In recent years TOF SIMS has also proved to he a very powerful tool for ultra-shallow depth profiling, having the advantage of simultaneously detecting all elements of interest. The dual beam mode [3.41], in particular, (see Sect. 3.2.2.1) enables optimized depth resolution, because sputtering conditions can be independently optimized. [Pg.105]

Because of their unique blend of properties, composites reinforced with high performance carbon fibers find use in many structural applications. However, it is possible to produce carbon fibers with very different properties, depending on the precursor used and processing conditions employed. Commercially, continuous high performance carbon fibers currently are formed from two precursor fibers, polyacrylonitrile (PAN) and mesophase pitch. The PAN-based carbon fiber dominates the ultra-high strength, high temperature fiber market (and represents about 90% of the total carbon fiber production), while the mesophase pitch fibers can achieve stiffnesses and thermal conductivities unsurpassed by any other continuous fiber. This chapter compares the processes, structures, and properties of these two classes of fibers. [Pg.119]

Reneganathan, K., Zondlo, J. W., Mintz, E. A., Kneisl, P., and Stiller, A. H., Preparation of an ultra-low ash coal extract under mild conditions. Fuel Processing Technology, 1988, 18, 273 278. [Pg.234]

The carbon-containing catalyst was treated by ultra-sound (US) in acetone at different conditions. The power of US treatment, and the time and regime (constant or pulsed), were varied. Even the weakest treatments made it possible to extract the nanotubules from the catalyst. With the increase of the time and the power of treatment the amount of extracted carbon increased. However, we noticed limitations of this method of purification. The quantity of carbon species separated from the substrate was no more than 10% from all deposited carbon after the most powerful treatment. Moreover, the increase of power led to the partial destruction of silica grains, which were then extracted with the tubules. As a result, even in the optimal conditions the final product was never completely free of silica (Fig. 12). [Pg.24]

The catalytic reaction of NO and CO on single crystal substrates, under ultra-high vacuum conditions, has been extensively studied. Neglecting N2O formation and CO desorption, the Langmuir-Hinshelwood mechanism of the NO + CO reaction can be described by the following sequence of steps [16,17] ... [Pg.415]

A large variety of oils is available, and recommendations for any set of conditions, compressor type and refrigerant can be obtained from the refiners. They are naphthene or paraffin-based oils. Synthetic lubricants have been developed for ultra-low-and high-temperature systems, especially for process heat pumps. [Pg.57]

The physical methods mostly require ultra high vacuum conditions having the disadvantage of not being applicable directly to solvent swollen films, but recent developments of in situ measurements in SIMS X-ray diffraction surface enhanced Raman spectroscopy (SERS) and scanning electrochemical tunneling microscopy... [Pg.60]

As a major branch of nanotribology. Thin Film Lubrication (TFL) has drawn great concerns. The lubricant him of TFL, which exists in ultra precision instruments or machines, usually ranges from a few to tens of nanometres thick under the condition of point or line contacts with heavy load, high temperature, low speed, and low viscosity lubricant. One of the problems of TFL study is to measure the him thickness quickly and accurately. The optical method for measuring the lubricant him thickness has been widely used for many years. Goher and Cameron [3] successfully used the technique of interferometry to measure elastohydrody-namic lubrication him in the range from 100 nm to 1 /rm in 1967. Now the optical interference method and Frustrated Total Reflection (FTR) technique can measure the him thickness of nm order. [Pg.7]

However, investigations up to now have mainly concentrated themselves on ambient environments even though it is known that ionic liquids have a very low vapor pressure, making them suitable for vacuum applications such as in space mechanisms, the disk drive industry, and microelec-tromechanical systems (MEMS). Due to the ultra-low vapor pressure of most ionic liquids, they have been expected to be good lubricants in vacuum. Further experimental works are required to evaluate lubrication behavior of ionic liquids under ultra-high vacuum conditions and in inert atmospheres. [Pg.55]

TABLE 4—Working conditions for mixed lubrication of ultra-low speed cases. ... [Pg.128]

Another example is dendritic crystal growth under diffusion-limited conditions accompanied by potential or current oscillations. Wang et al. reported that electrodeposition of Cu and Zn in ultra-thin electrolyte showed electrochemical oscillation, giving beautiful nanostmctured filaments of the deposits [27,28]. Saliba et al. found a potential oscillation in the electrodeposition of Au at a liquid/air interface, in which the Au electrodeposition proceeds specifically along the liquid/air interface, producing thin films with concentric-circle patterns at the interface [29, 30]. Although only two-dimensional ordered structures are formed in these examples because of the quasi-two-dimensional field for electrodeposition, very recently, we found that... [Pg.241]

Similarly, the use of ultra-low viscosity lubricants in compressors for refrigerators and freezers can cut energy consumption by 10%. With refrigerators, freezers and air-conditioning units representing somewhere between 5 and 10% of the UK s total electricity consumption, this is a very interesting commercial opportimity. ... [Pg.64]


See other pages where Ultra conditions is mentioned: [Pg.729]    [Pg.2794]    [Pg.59]    [Pg.161]    [Pg.94]    [Pg.244]    [Pg.178]    [Pg.311]    [Pg.2]    [Pg.178]    [Pg.148]    [Pg.301]    [Pg.581]    [Pg.57]    [Pg.472]    [Pg.886]    [Pg.1268]    [Pg.610]    [Pg.632]    [Pg.1080]    [Pg.88]    [Pg.459]    [Pg.148]    [Pg.380]    [Pg.180]    [Pg.313]    [Pg.96]    [Pg.103]    [Pg.121]    [Pg.159]    [Pg.213]    [Pg.205]    [Pg.196]    [Pg.30]    [Pg.211]    [Pg.521]    [Pg.223]    [Pg.10]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



© 2024 chempedia.info