Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Two-phase systems: boiling, condensing

Two-phase systems boiling, condensing and distillation 119 where... [Pg.119]

A closed container of water is a two-phase system in which molecules of water are in a gas phase in the space above the liquid phase. Moving randomly above the liquid, some of these molecules strike the walls and some go back into the liquid, as shown in Figure 21. An equilibrium, in which the rate of evaporation equals the rate of condensation, is soon created. The molecules in the gas exert pressure when they strike the walls of the container. The pressure exerted by the molecules of a gas, or vapor, phase in equilibrium with a liquid is called the vapor pressure. You can define boiling point as the temperature at which the vapor pressure equals the external pressure. [Pg.418]

Consider transport across the phase boundary shown in Figure 11.3. We shall denote the two bulk phases by L and V and the interface by I. Though the analysis below is developed for liquid-vapor interphase transport the formalism is generally valid for all two-phase systems. Therefore, what follows applies equally to distillation, stripping, and absorption operations. With a few modifications (to be described later), the analysis below may be used in the determination of rates of condensation, evaporation, vaporization, and boiling. [Pg.279]

The extension of these PECs to two-phase heat transfer is complicated by the dependence of the local heat transfer coefficient on the local temperature difference and/or quality. Heat transfer and pressure drop have been considered in the evaluation of internally finned tubes for refrigerant evaporators [14] and for internally finned tubes, helically ribbed tubes, and spirally fluted tubes for refrigerant condensers [15]. Pumping power has been incorporated into the evaluation of inserts used to elevate subcooled boiling critical heat flux (CHF) [16, 17]. A discussion of the application of enhancement to two-phase systems is given by Webb [373],... [Pg.790]

Ans. At 1.0 atm, the boiling point of water is 100 °C. Therefore at its normal boiling point, gaseous water will condense to form a two-phase system of liquid and vapor. This temperature is called the dew point, and is identical to the normal boiling point. Evaporation and condensation occur simultaneously at the same temperature. [Pg.109]

S.M. Ghiaasiaan. Two-Phase Flow, Boiling, and Condensation In Conventional and Miniature Systems. Cambridge University Press, 2007. [Pg.547]

The shape of the coohng and warming curves in coiled-tube heat exchangers is affected by the pressure drop in both the tube and shell-sides of the heat exchanger. This is particularly important for two-phase flows of multicomponent systems. For example, an increase in pressure drop on the shellside causes boiling to occur at a higher temperature, while an increase in pressure drop on the tubeside will cause condensation to occur at a lower temperature. The net result is both a decrease in the effective temperature difference between the two streams and a requirement for additional heat transfer area to compensate for these losses. [Pg.1131]

Flow instabilities are undesirable in boiling, condensing, and other two-phase flow processes for several reasons. Sustained flow oscillations may cause forced mechanical vibration of components or system control problems. Flow oscillations affect the local heat transfer characteristics and may induce boiling crisis (see Sec. 5.4.8). Flow stability becomes of particular importance in water-cooled and watermoderated nuclear reactors and steam generators. It can disturb control systems, or cause mechanical damage. Thus, the designer of such equipment must be able to predict the threshold of flow instability in order to design around it or compensate for it. [Pg.486]

Supercritical fluids represent a different type of alternative solvent to the others discussed in this book since they are not in the liquid state. A SCF is defined as a substance above its critical temperature (Tc) and pressure (Pc)1, but below the pressure required for condensation to a solid, see Figure 6.1 [1], The last requirement is often omitted since the pressure needed for condensation to occur is usually unpractically high. The critical point represents the highest temperature and pressure at which the substance can exist as a vapour and liquid in equilibrium. Hence, in a closed system, as the boiling point curve is ascended, increasing both temperature and pressure, the liquid becomes less dense due to thermal expansion and the gas becomes denser as the pressure rises. The densities of both phases thus converge until they become identical at the critical point. At this point, the two phases become indistinguishable and a SCF is obtained. [Pg.131]

Aldol condensations were originally carried out in the liquid phase and catalysed homogeneously by acids or bases this way of operation is still predominant. Solid-catalysed aldol reactions can also be performed in the liquid phase (in trickle or submerged beds of catalyst), but in many cases vapour phase systems are preferred the factors determining the choice are the boiling points and the stability of the reactants at elevated temperatures. At higher temperatures, the formation of a, j3-unsaturated aldehydes or ketones [reactions (B) and (C)] is preferred to aldol (ketol) formation [reaction (A)]. A side reaction, which may become important in some cases, is the self-condensation of the more reactive carbonyl compound if a mixed condensation of two different aldehydes or ketones is occurring. The Cannizzaro reaction of some aldehydes or polymerisation to polyols or other resin-like products can also accompany the main reaction. [Pg.340]

Azeotropic and Partially Miscible Systems. Azeotropic mixtures are those whose vapor and liquid equilibrium compositions are identical. Their x-y lines cross or touch the diagonal. Partially miscible substances form a vapor phase of constant composition over the entire range of two-phase liquid compositions usually the horizontal portion of the x-y plot intersects the diagonal, but those of a few mixtures do not, notably those of mixtures of methylethylketone and phenol with water. Separation of azeotropic mixtures sometimes can be effected in several towers at different pressures, as illustrated by Example 13.6 for ethanol-water mixtures. Partially miscible constant boiling mixtures usually can be separated with two towers and a condensate phase separator, as done in Example 13.7 for n-butanol and water. [Pg.382]

Our preceding discussions of convection heat transfer have considered homogeneous single-phase systems. Of equal importance are the convection processes associated with a change of phase of a fluid. The two most important examples are condensation and boiling phenomena, although heat transfer with solid-gas changes has become important because of a number of applications. [Pg.491]

Properties of pure compounds that exist as two phases in equilibrium are functions of one independent variable. Either temperature or pressure may be chosen as the independent variable. If one of the phases is condensed (solid or liquid) and the other phase is gas (vapor) and temperature is the independent variable, the pressure is the vapor pressure. The vapor pressure is a function only of temperature, and it is independent of the volume of the system or of the amounts of phases present. If pressure is the independent variable, the temperature is the boiling point. Therefore, the boiling point is a function only of pressure applied to the system and is independent of the total volume or of the amounts of the two phases present... [Pg.1]


See other pages where Two-phase systems: boiling, condensing is mentioned: [Pg.117]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.117]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.610]    [Pg.610]    [Pg.294]    [Pg.305]    [Pg.86]    [Pg.290]    [Pg.269]    [Pg.326]    [Pg.131]    [Pg.305]    [Pg.408]    [Pg.162]    [Pg.257]    [Pg.255]    [Pg.401]    [Pg.105]    [Pg.666]    [Pg.153]    [Pg.143]    [Pg.176]    [Pg.641]   
See also in sourсe #XX -- [ Pg.117 , Pg.119 , Pg.121 , Pg.123 , Pg.125 , Pg.127 , Pg.129 , Pg.131 , Pg.133 ]




SEARCH



Condensate systems

Condensed phases

Condensed systems

Phase boiling

Phase condensation

Two-Phased Systems

Two-phase systems

Two-phase systems boiling, condensing and distillation

© 2024 chempedia.info