Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbulent multicomponent mass transfer coefficients

In the five chapters that make up Part II (Chapters 7-11) we consider the estimation of rates of mass and energy transport in multicomponent systems. Multicomponent mass transfer coefficients are defined in Chapter 1, Chapter 8 develops the multicomponent film model, Chapter 9 describes unsteady-state diffusion models, and Chapter 10 considers models based on turbulent eddy diffusion. Chapter 11 shows how the additional complication of simultaneous mass and energy transfer may be handled. [Pg.585]

The rate parameters of importance in the multicomponent rate model are the mass transfer coefficients and surface diffusion coefficients for each solute species. For accurate description of the multicomponent rate kinetics, it is necessary that accurate values are used for these parameters. It was shown by Mathews and Weber (14), that a deviation of 20% in mass transfer coefficients can have significant effects on the predicted adsorption rate profiles. Several mass transfer correlation studies were examined for estimating the mass transfer coefficients (15, jL6,17,18,19). The correlation of Calderbank and Moo-Young (16) based on Kolmogaroff s theory of local isotropic turbulence has a standard deviation of 66%. The slip velocity method of Harriott (17) provides correlation with an average deviation of 39%. Brian and Hales (15) could not obtain super-imposable curves from heat and mass transfer studies, and the mass transfer data was not in agreement with that of Harriott for high Schmidt number values. [Pg.35]

In Chapter 7 we define mass transfer coefficients for binary and multicomponent systems. In subsequent chapters we develop mass transfer models to determine these coefficients. Many different models have been proposed over the years. The oldest and simplest model is the film model this is the most useful model for describing multicomponent mass transfer (Chapter 8). Empirical methods are also considered. Following our discussions of film theory, we describe the so-called surface renewal or penetration models of mass transfer (Chapter 9) and go on to develop turbulent eddy diffusivity based models (Chapter 10). Simultaneous mass and energy transport is considered in Chapter 11. [Pg.140]

A fundamental shortcoming of the Chilton-Colburn approach for multicomponent mass transfer calculations is that the assumed dependence of [/ ] on [Sc] takes no account of the variations in the level of turbulence, embodied by r turb/, with variations in the flow conditions. The reduced distance y is a function of the Reynolds number y = (y/R )(//8) / Re consequently. Re affects the reduced mixing length defined by Eq. 10.2.21. An increase in the turbulence intensity should be reflected in a relative decrease in the influence of the molecular transport processes. So, for a given multicomponent mixture the increase in the Reynolds number should have the direct effect of reducing the effect of the phenomena of molecular diffusional coupling. That is, the ratios of mass transfer coefficients 21/ 22 should decrease as Re increases. [Pg.264]

There is little to choose between the film models that use the Chilton-Colburn analogy to obtain the heat and mass transfer coefficients and the turbulent eddy diffusivity methods when they are used to predict the performance of multicomponent condensers. [Pg.476]


See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Mass coefficient

Mass transfer coefficient

Mass transfer multicomponent

Mass transfer turbulence

Multicomponent Mass Transfer Coefficients

Multicomponent transfer coefficient

Turbulent coefficient

Turbulent mass transfer coefficient

© 2024 chempedia.info