Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tt-allylpalladium

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

The oxidative coupling of two molecules of butadiene with Pd(0) forms the bis-TT-allylpalladium complex 31, which is the resonance form of 2,5-divinyb palladacyclopentane (30) formed by oxidative cyclization. [Pg.16]

TT-Allylpalladium chloride (36) reacts with the nucleophiles, generating Pd(0). whereas tr-allylnickel chloride (37) and allylmagnesium bromide (38) reacts with electrophiles (carbonyl), generating Ni(II) and Mg(II). Therefore, it is understandable that the Grignard reaction cannot be carried out with a catalytic amount of Mg, whereas the catalytic reaction is possible with the regeneration of an active Pd(0) catalyst, Pd is a noble metal and Pd(0) is more stable than Pd(II). The carbon-metal bonds of some transition metals such as Ni and Co react with nucleophiles and their reactions can be carried out catalytic ally, but not always. In this respect, Pd is very unique. [Pg.17]

The silyl enol ethers 209 and 212 are considered to be sources of carbanions. and their transmetallation with Pd(OAc)2 forms the Pd enolate 210. or o.w-tt-allylpalladium, which undergoes the intramolecular alkene insertion and. 1-elimination to give 3-methylcyclopentenone (211) and a bicyclic system 213[199], Five- and six-membered rings can be prepared by this reaction[200]. Use of benzoquinone makes the reaction catalytic. The reaction has been used for syntheses of skeletons of natural products, such as the phyllocladine intermediate 214[201], capnellene[202], the stemodin intermediate 215[203] and hir-sutene [204]. [Pg.49]

Treatment of 7r-allylpalladium chloride with CO in EtOH affords ethyl 3-butenoate (321)[284]., 3, y-Unsaturated esters, obtained by the carbonylation of TT-allylpalladium complexes, are reactive compounds for 7r-allyl complex formation and undergo further facile transformation via 7r-allylpalladium complex formation. For example, ethyl 3-butenoate (321) is easily converted into 1-carboethoxy-TT-allylpalladium chloride (322) by the treatment with Na PdCL in ethanol. Then the repeated carbonylation of the complex 322 gives ethyl 2-... [Pg.64]

Isomerization of double bonds in vitamin D analogs such as calciferol by oxidation and reduction has been carried out via the formation of the tt-allylpalladium complex 334 with PdCl2(PhCN)2 in 70% yield, followed by hydride reduction to afford 335[295],... [Pg.66]

The TT-allylpalladium complexes formed from conjugated dienes are reactive and react further with a nucleophile to give the 1,4-difunctionalized products 340. Based on this reaction, various nucleophiles are introduced into conjugated dienes to form 1,4-difunctionalized 2-alkenes. Acetoxy, alkoxy, halo, and... [Pg.66]

Aryl- or alkenylpalladium comple.xcs can be generated in situ by the trans-metallation of the aryl- or alkenylmercury compounds 386 or 389 with Pd(Il) (see Section 6). These species react with 1,3-cydohexadiene via the formation of the TT-allylpalladium intermediate 387, which is attacked intramolecularlv by the amide or carboxylate group, and the 1,2-difunctionalization takes place to give 388 and 390[322]. Similarly, the ort/trt-thallation of benzoic acid followed by transmetallation with Pd(II) forms the arylpalladium complex, which reacts with butadiene to afford the isocoumarin 391, achieving the 1,2-difunctionalization of butadiene[323]. [Pg.73]

Butenoic acid and 4-pentenoic acid (42) react with alkenyl halides or tri-flates to afford 7-alkenyl-7-lactones and the ( -alkenyl-5-valerolactone 44 via the TT-allylpalladium intermediate 43 formed by the elimination of Pd—H and its readdition in opposite regiochemistry using a phosphine-free Pd cata-lyst[43]. [Pg.134]

An efficient carboannulation proceeds by the reaction of vinylcyclopropane (135) or vinylcyclobutane with aryl halides. The multi-step reaction is explained by insertion of alkene, ring opening, diene formation, formation of the TT-allylpalladium 136 by the readdition of H—Pd—I, and its intramolecular reaction with the nucleophile to give the cyclized product 137[I08]. [Pg.147]

The dienyne 394 undergoes facile polycyclization. Since the neopentylpalla-dium 395 is formed which has no hydrogen /J to the Pd after the insertion of the disubstituted terminal alkene, the cyclopropanation takes place to form the tt-allylpalladium intermediate 396, which is terminated by elimination to form the diene 397(275]. The dienyne 398 undergoes remarkable tandem 6-e. o-dig. 5-cxo-trig. and -exo-trig cyclizations to give the tetracycle 399 exclu-sively(277]. [Pg.181]

Application of 7r-allylpalladium chemistry to organic synthesis has made remarkable progress[l]. As deseribed in Chapter 3, Seetion 3, Tt-allylpalladium complexes react with soft carbon nucleophiles such as maionates, /3-keto esters, and enamines in DMSO to form earbon-carbon bonds[2, 3], The characteristie feature of this reaction is that whereas organometallic reagents are eonsidered to be nucleophilic and react with electrophiles, typieally earbonyl eompounds, Tt-allylpalladium complexes are electrophilie and reaet with nucleophiles such as active methylene compounds, and Pd(0) is formed after the reaction. [Pg.290]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

Mainly allylic esters are used as the substrates for the catalytic reactions. In addition, the allylic compounds shown are known to react with Pd(0) to form TT-allylpalladium complexes. Even allylic nitro compounds[8,9] and sul-fones[KM2] are used for the allylation. The reactivities of these allylic compounds arc very different. [Pg.291]

Convincing evidence for oxidative addition by inversion has been presented by the reaction of chiral (5)-( )-3-acetoxy-l-phenyl-1-butene (4) with Pd(0)(dppe), followed by the treatment with NaBF4 to give optically active the TT-allylpalladium complex (l/ ,25,35) 5 with 81% stereoselectivity[19]. [Pg.292]

The TT-allylpalladium complexes 241 formed from the ally carbonates 240 bearing an anion-stabilizing EWG are converted into the Pd complexes of TMM (trimethylenemethane) as reactive, dipolar intermediates 242 by intramolecular deprotonation with the alkoxide anion, and undergo [3 + 2] cycloaddition to give five-membered ring compounds 244 by Michael addition to an electron-deficient double bond and subsequent intramolecular allylation of the generated carbanion 243. This cycloaddition proceeds under neutral conditions, yielding the functionalized methylenecyclopentanes 244[148], The syn-... [Pg.322]

Several types of Pd-catalyzed or -promoted reactions of conjugated dienes via TT-allylpalladium complexes are known. The Pd(II)-promoted oxidative difunctionalization reactions of conjugated dienes with various nucleophiles is treated in Chapter 3, Section 4, and Pd(0)-catalyzed addition reactions of conjugated dienes to aryl and alkenyl halides in this chapter. Section 1.1.1. Other Pd(0)-catalyzed reactions of conjugated dienes are treated in this section. [Pg.422]

Formic acid behaves differently. The expected octadienyl formate is not formed. The reaction of butadiene carried out in formic acid and triethylamine affords 1,7-octadiene (41) as the major product and 1,6-octadiene as a minor product[41-43], Formic acid is a hydride source. It is known that the Pd hydride formed from palladium formate attacks the substituted side of tt-allylpalladium to form the terminal alkene[44] (see Section 2.8). The reductive dimerization of isoprene in formic acid in the presence of Et3N using tri(i)-tolyl)phosphine at room temperature afforded a mixture of dimers in 87% yield, which contained 71% of the head-to-tail dimers 42a and 42b. The mixture was treated with concentrated HCl to give an easily separable chloro derivative 43. By this means, a- and d-citronellol (44 and 45) were pre-pared[45]. [Pg.430]

Pd(Ph3P)4, dimedone, THF, 88-95% yield. The catalyst is not poisoned by the presence of thioethers such as methionine. Diethyl malonate has also been used as a nucleophile to trap the TT-allylpalladium intermediate and regenerate Pd(O)." ... [Pg.527]

Palladium catalyzes allylation of carbonyl compounds with various ally lie compounds using In-InCl3 in aqueous media (Eq. 8.66).158 Various allylic compounds can be effectively applied via the formation of TT-allylpalladium(II) intermediates and their transmetalation with indium in the presence of indium trichloride in aqueous media. [Pg.250]

Allylic acetoxylation.2 Pd(OAc)2 in HOAc can effect allylic acetoxylation of alkenes, probably via a TT-allylpalladium complex, and only a catalytic amount is required in the presence of a cooxidant such as benzoquinone-Mn02. The reaction is not useful in the case of simple alkenes because of lack of discrimination between the two allylic positions, but this acetoxylation can be regioselective in the case of alicyclic alkenes. [Pg.248]

Scheme 16.11 Reaction pathway via a 2-acyl- tt-allylpalladium complex. Scheme 16.11 Reaction pathway via a 2-acyl- tt-allylpalladium complex.
Suzuki has shown that vinylcyclopropane 143 behaves both as an electrophile and a nucleophile and thus undergoes palladium-catalyzed ring-opening polymerization as shown in Equation (66). Vinyl cyclopropane 143 first reacts with palladium(O) to induce ring opening of the cyclopropane ring and forms zwitterionic TT-allylpalladium/molonate anion species. Repeated intermolecular attack of the malonate anionic moiety to the 7r-allylpalladium part through bond formation of an r/i -carbon atom affords finally the polymer 142. ... [Pg.677]

Tomita and Endo have shown that three-component coupling of bisallene 163, aryl dihalide, and a malonate nucleophile takes place with a palladium catalyst. Arylpalladium species derived from the halide attacks the central carbon of allene to form a Tt-allylpalladium intermediate, which is then attacked by the malonate anion to form C-C... [Pg.681]

Palladium-catalyzed cyclization of o-allylphenols to benzofurans has been extensively studied.11 As is usual, early systems were catalytically inefficient but continued studies led to substantial improvement. A wide range of catalyst systems work for this process. One of the most efficient, from a standpoint of catalyst turnover and chemical yield, was based on chiral TT-allylpalladium catalysts (equation 6), although the optical yields were low. y-Pyrones can also be efficiently synthesized by palladium(II)-cata-lyzed addition of phenolic OH groups to conjugated enones (equation 7).12... [Pg.557]


See other pages where Tt-allylpalladium is mentioned: [Pg.45]    [Pg.62]    [Pg.297]    [Pg.320]    [Pg.355]    [Pg.385]    [Pg.402]    [Pg.569]    [Pg.342]    [Pg.85]    [Pg.668]    [Pg.277]    [Pg.114]    [Pg.676]    [Pg.38]    [Pg.208]    [Pg.97]    [Pg.629]    [Pg.1523]    [Pg.2191]    [Pg.2548]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Allylpalladium

Tt-Allylpalladium intermediate

© 2024 chempedia.info