Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TS-2 titanium silicate

TS-1 (titanium silicate molecular sieve), H2O2, MeOH, reflux, 4-18 h, 60-64% yield. ... [Pg.353]

The T-atoms that the framework is composed of play a major part in determining the nature of the zeolite. Transition metals can be incorporated into the structure to produce catalysts for selective oxidation reactions. An example of this behaviour is the zeolite TS-1 (titanium silicate-1) which is used in industry for the production of hydroquinone and catechol from phenol and hydrogen peroxide. [Pg.176]

H2O2 on a TS-1 (titanium silicate) catalyst, which reduces this environmental impact. This requires the production of H2O2 on site, to avoid its storage and transport, which are hazardous activities. A possible route for the synthesis of H2O2 could he from H2 and O2 mixtures using Pd-hased catalysts. Proper reactor design to handle the explosive gas mixture has not been achieved so far. [Pg.277]

Titanium Silicates. A number of titanium siUcate minerals are known (160) examples are Hsted in Table 19. In most cases, it is convenient to classify these on the basis of the connectivity of the SiO building blocks, eg, isolated tetrahedra, chains, and rings, that are typical of siUcates in general. In some cases, the SiO units may be replaced, even if only to a limited extent by TiO. For example, up to 6% of the SiO in the garnet schorlomite can be replaced by TiO. In general, replacement of SiO by TiO bull ding blocks increases the refractive indices of these minerals. Ti has also replaced Si in the framework of various zeofltes. In addition, the catalytic activity of both titanium-substituted ZSM-5 (TS-1) and ZSM-11 (TS-2) has received attention (161), eg, the selective oxidation of phenol, with hydrogen peroxide, to hydroquinone and catechol over TS-1 has been operated at the 10,000 t/yr scale in Italy (162). [Pg.132]

Enichem made one of the most important steps forward in the development of general heterogeneous oxidation catalysts in the early 1990s with the commercialization of titanium silicate (TS-1) catalysts. TS-1 has a structure similar to ZSM-5 in which the aluminium has been replaced by titanium it is prepared by reaction of tetraethylorthosilicate and tetra-ethylorthotitanate in the presence of an organic base such as tetrapropy-lammonium hydroxide. This catalyst is especially useful for oxidation reactions using hydrogen peroxide (Scheme 4.11), from which the only byproduct is water, clean production of hydroquinone being one of the possibilities. [Pg.102]

TS-1 and TS-2 microporous titanium silicate molecular sieves with MFI... [Pg.25]

In addition to the characteristic XRD patterns and photoluminescence, UV-visible and X-ray absorption spectra, another fingerprint thought to indicate lattice substitution of titanium sites was the vibrational band at 960 cm-1, which has been recorded by infrared and Raman spectroscopy (33,34). Although there is some controversy about the origin of this band, its presence is usually characteristic of a good TS-1 catalyst, although it turned out to be experimentally extremely difficult to establish quantitative correlations between the intensity of the 960 cm-1 band and the Ti content of a Ti silicate and/or its catalytic activity. [Pg.40]

Titanium silicate molecular sieves not only catalyze the oxidation of C=C double bonds but can be successfully employed for the oxidative cleavage of carbon-nitrogen double bonds as well. Tosylhydrazones and imines are oxidized to their corresponding carbonyl compounds (243) (Scheme 19). Similarly, oximes can be cleaved to their corresponding carbonyl compounds (165). The conversion of cyclic dienes into hydroxyl ketones or lactones is a novel reaction reported by Kumar et al. (165) (Scheme 20). Thus, when cyclopentadienes, 1,3-cyclohexadiene, or furan is treated with aqueous H202 in acetone at reflux temperatures for 6 h in the presence of TS-1, the corresponding hydroxyl ketone or lactone is obtained in moderate to good yields (208). [Pg.127]

The review of Notari (33) covers the synthesis methodologies of titanium silicate molecular sieves available up to 1996. The reviews of Corma (279) and subsequently of Biz and Occelli (280) describe the synthesis of mesoporous molecular sieves. An informative article on the preparation of TS-1 was reported recently by Perego et al. (68). In this section we list some of the recent developments in the synthesis of micro and mesoporous titanosilicate molecular sieves. [Pg.165]

Titanium containing pure-silica ZSM-5 (TS-1) materials are synthesized using different methods. The activity of the titanium containing catalysts for the oxidation of alkanes, alkenes and phenol at temperatures below 100 °C using aqueous H2O2 as oxidant is reported. The relationships between the physicochemical and catalytic properties of these titanium silicates are discussed. The effects of added duminum and sodium on the catalytic activity of TS-1 are described. The addition of sodium during the synthesis of TS-1 is detrimental to the catalytic activity while sodium incorporation into preformed TS-1 is not. The framework substitution of aluminum for silicon appears to decrease the amount of framework titanium. [Pg.273]

Several preparation methods have been reported for the synthesis of TS-1. In this work, we have investigated the physicochemical properties of TS-1 samples synthesized by different preparation metiiods and tested these materials as catalysts for the oxidation of n-octane, 1-hexene and phenol using aqueous hydrogen peroxide (30 wt%) as oxidant at temperatures below 100 C. For comparison, Ti02 (anatase) and the octahedral titanium-containing silicate molecular sieve (ETS-10) (5) have been studied. The effect of the presence of aluminum and/or sodium on the catalytic activity of TS-1 is also discussed. [Pg.273]

Titanium Silicates. XRD data show that all the TS-1 samples are very crystalline and have the MFI structure. The Ti02 obtained after calcination has the anatase structure. [Pg.275]

The activity data confirm that an IR absorption band at 960 cm" is a necessary condition for titanium silicates to be active for the selective oxidation of hydrocarbons with aqueous H2O2 as suggested by Huybrechts et al. (9). However, this band is not a sufficient condition for predicting the activity of the TS-1 catalyst. Although TS-l(B) and TS-l(C) show intensities for the 960 cm- band similar to TS-1 (A), their activities are different First of all, the reaction data reveal that TS-1 (A) is much more active than TS-l(B) for phenol hydroxylation, while both samples show similar activity for n-octane oxidation and 1-hexene epoxidation. Therefore, the presence of the IR band at 960 cm-i in TS-1 catalysts may correlate with the activities for the oxidation of n-octane and the epoxidation of 1-hexene but not for phenol hydroxylation. However, note that the amorphous Ti02-Si02 also has an IR absorption band at 960 cm- and it does not activate either substrate. [Pg.276]

The isomorphous substitution of Siiv by Ti,v was claimed by Taramasso, Perego, and Notari in 1983 for a new material with the composition xTi02(l - x)Si02 (0.0 x 0.04 M). This has the crystalline structure of silicalite-1 (or MF1) with Tilv in framework positions it was named titanium silicalite-1 or TS-1 (Taramasso el al., 1983). The occurrence of isomorphous substitution was deduced from the regular increase in unit-cell parameters with the degree of substitution and from the good agreement between the observed and calculated values of the Si—O and Ti—O distances. The same type of evidence had already been obtained by the same authors in the synthesis of crystalline microporous boron silicates, where the smaller B—O distance relative to Si—O causes a decrease in unit-cell parameters (Taramasso et al., 1980). [Pg.254]

The first discovered member of the group of crystalline microporous materials made of oxides of titanium and silicon is titanium silicalite-1 (TS-1). TS-1 has attracted much interest for its unique catalytic properties it is also of interest by virtue of the proposal that Tiiv assumes tetrahedral coordination in substituting for SiIV in framework positions of crystalline silica, as stated above. To clarify this point, many detailed studies of the TS-1 structure have been carried out. An outcome of the work was the discovery of new crystalline microporous titanium silicates. [Pg.267]


See other pages where TS-2 titanium silicate is mentioned: [Pg.149]    [Pg.205]    [Pg.149]    [Pg.205]    [Pg.205]    [Pg.144]    [Pg.375]    [Pg.149]    [Pg.205]    [Pg.149]    [Pg.205]    [Pg.205]    [Pg.144]    [Pg.375]    [Pg.135]    [Pg.192]    [Pg.789]    [Pg.73]    [Pg.190]    [Pg.194]    [Pg.144]    [Pg.27]    [Pg.28]    [Pg.31]    [Pg.163]    [Pg.163]    [Pg.106]    [Pg.147]    [Pg.248]    [Pg.1094]    [Pg.274]    [Pg.276]    [Pg.538]    [Pg.1094]    [Pg.781]    [Pg.282]   


SEARCH



Titanium silicate

© 2024 chempedia.info