Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tripositive

Ultrasonic absorption is used in the investigation of fast reactions in solution. If a system is at equilibrium and the equilibrium is disturbed in a very short time (of the order of 10"seconds) then it takes a finite time for the system to recover its equilibrium condition. This is called a relaxation process. When a system in solution is caused to relax using ultrasonics, the relaxation lime of the equilibrium can be related to the attenuation of the sound wave. Relaxation times of 10" to 10 seconds have been measured using this method and the rates of formation of many mono-, di-and tripositive metal complexes with a range of anions have been determined. [Pg.411]

The compounds also illustrate the very great tendency of tripositive chromium to form complexes, which are usually of the octahedral form [CrXf,], for example [CrlNHj) ], [Cr(NH3)5N02] [Cr(CN),] -. [Pg.381]

L = lanthanide), are indeed similar to the ions of the alkaline earth metals, except that they are tripositive, not dipositive. [Pg.441]

In the actinides, the element curium, Cm, is probably the one which has its inner sub-shell half-filled and in the great majority of its compounds curium is tripositive, whereas the preceding elements up to americium, exhibit many oxidation states, for example -1-2, -1-3. -1-4, -1-5 and + 6, and berkelium, after curium, exhibits states of -1- 3 and -E 4. Here then is another resemblance of the two series. [Pg.444]

Experiments seem to show that the element possesses a moderately stable dipositive (11) oxidation state in addition to the tripositive (111) oxidation state, which is characteristic of the actinide elements. [Pg.214]

Lawrencium behaves differently from dipositive nobelium and more like the tripositive elements earlier in the actinide series. [Pg.215]

Solid Compounds. The tripositive actinide ions resemble tripositive lanthanide ions in their precipitation reactions (13,14,17,20,22). Tetrapositive actinide ions are similar in this respect to Ce . Thus the duorides and oxalates are insoluble in acid solution, and the nitrates, sulfates, perchlorates, and sulfides are all soluble. The tetrapositive actinide ions form insoluble iodates and various substituted arsenates even in rather strongly acid solution. The MO2 actinide ions can be precipitated as the potassium salt from strong carbonate solutions. In solutions containing a high concentration of sodium and acetate ions, the actinide ions form the insoluble crystalline salt NaM02(02CCH2)3. The hydroxides of all four ionic types are insoluble ... [Pg.221]

The common tripositive cations may be separated from many dipositive cations by the basic acetate or basic benzoate method. These separations are based upon the fact that the equilibria for the first dissociation of the typical ions are ... [Pg.437]

Any strong acid that may be present is first neutralised. Then, by selecting an appropriate base, whose conjugate acid has a Ka of about 10 5, the equilibrium for the tripositive cations will be forced to the right the base is too weak, however, to remove the hydroxonium ions from the equilibrium of the dipositive cations. Since a large excess of the basic ion is added, a basic salt of the tripositive metal usually precipitates instead of the normal hydroxide. Acetate or benzoate ions (in the form of the sodium salts) are the most common bases that are employed for this procedure. The precipitation of basic salts may be combined with precipitation from homogeneous solution, and thus very satisfactory separations may be obtained. [Pg.437]

The reason for the ultramicrochemical test was to establish whether the bismuth phosphate would carry the plutonium at the concentrations that would exist at the Hanford extraction plant. This test was necessary because it did not seem logical that tripositive bismuth should be so efficient in carrying tetrapositive plutonium. In subsequent months there was much skepticism on this point and the ultramicrochemists were forced to make repeated tests to prove this point. Thompson soon showed that Pu(Vl) was not carried by bismuth phosphate, thus establishing that an oxidation-reduction cycle would be feasible. All the various parts of the bismuth-phosphate oxidation-reduction procedure, bulk reduction via cross-over to a rare earth fluoride oxidation-reduction step and final isolation by precipitation of plutonium (IV) peroxide were tested at the Hanford concentrations of... [Pg.25]

The valences of the rare-earth metals are calculated from their magnetic properties, as reported by Klemm and Bommer.14 It is from the fine work of these investigators that the lattice constants of the rare-earth metals have in the main been taken. The metals lutecium and ytterbium have only a very small paramagnetism, indicating a completed 4/ subshell and hence the valences 3 and 2, respectively (with not over 3% of trivalent ytterbium present in the metal). The observed paramagnetism of cerium at room temperature corresponds to about 20% Ce4+ and 80% Ce3+, that of praseodymium and that of neodymium to about 10% of the quadripositive ion in each case, and that of samarium to about 20% of the bipositive ion in equilibrium with the tripositive ion. [Pg.353]

The second class of reaction is that of processes in which the 4f electrons are conserved. The obvious examples are the complexing reactions of tripositive lanthanide ions. Here the irregularities due to changes in inter-electronic repulsion almost entirely disappear. We then get the slight smooth energy change whose consequences were so familiar to 19 century chemists, who struggled vdth the separation problem. [Pg.5]

In many cases, lanthanide reactions can either be assigned exclusively to one of these two classes, or they show deviations that the classification makes understandable. In Fig. 1.2, we plot the values of AH for the complexing of the tripositive aqueous ions by EDTA (aq), a reaction in which the 4f electrons are conserved. The irregularities are negligible at the chosen scale. Also shown are the values of AH (MCl3,s) which refer to ... [Pg.5]

Fig. 8. Correlation between Pearson s hardness parameter (7P) derived from gas-phase enthalpies of formation of halide compounds of Lewis acids (19), and the hardness parameter in aqueous solution (/A), derived from formation constants of fluoride and hydroxide complexes in aqueous solution (17). The Lewis acids are segregated by charge into separate correlations for monopositive ( ), dipositive (O), and tripositive ( ) cations, with a single tetrapositive ion (Zr4+, ). The /P value for Tl3+ was not reported, but the point is included in parentheses to show the relative ionicity of Tl(III) to ligand bonds. [Pg.105]

TRIS(0-ETHYL DITHIOCARBONATO) COMPLEXES OF TRIPOSITIVE CHROMIUM, INDIUM, AND COBALT... [Pg.47]

Tris(0-ethyl dithiocarbonato)chromium(III) is obtained as a dark blue crystalline powder which decomposes at 100 to 140°. The indium(III) ethylxanthate complex forms small colorless crystals which decompose at 130 to 150°.16,17 The cobalt (III) ethylxanthate complex is isolated as a dark green crystalline powder whose decomposition temperature determined by use of a thermal balance is 135 to 137° (lit. value, 117° 2 118 to 119°8). These compounds decompose slowly in air and more rapidly when heated in solution. The tripositive chromium, indium, and cobalt complexes are insoluble in water but are soluble in many organic solvents (Table T). [Pg.52]

Moeller, T. and Hseu, T. M. (1962). Observations on the rare earths— LXXVI. The stabilities of the trans-1,2, diaminocyclohexane-N,N tetraa-cetic acid chelates of the tripositive ions, J. Inorg. Nucl. Chem. 24, 1635. [Pg.91]

In oxidation reactions starting from the Ni(ii) or Cu(ii) complexes, the ligand s dinegative charge on coordination should aid stabilization of the tripositive charge on the oxidized metal ions. Thus, it was found that both complexes undergo reversible one-electron oxidations which occur more readily (at less positive potentials) than for the corresponding cyclam systems. [Pg.212]

Reference has been made already to the existence of a set of inner transition elements, following lanthanum, in which the quantum level being filled is neither the outer quantum level nor the penultimate level, but the next inner. These elements, together with yttrium (a transition metal), were called the rare earths , since they occurred in uncommon mixtures of what were believed to be earths or oxides. With the recognition of their special structure, the elements from lanthanum to lutetium were re-named the lanthanons or lanthanides. They resemble one another very closely, so much so that their separation presented a major problem, since all their compounds are very much alike. They exhibit oxidation state + 3 and show in this slate predominantly ionic characteristics—the ions. LJ+ (L = lanthanide), are indeed similar to the ions of the alkaline earth metals, except that they are tripositive, not dipositive. [Pg.441]


See other pages where Tripositive is mentioned: [Pg.14]    [Pg.58]    [Pg.103]    [Pg.149]    [Pg.278]    [Pg.569]    [Pg.206]    [Pg.236]    [Pg.389]    [Pg.158]    [Pg.214]    [Pg.216]    [Pg.221]    [Pg.450]    [Pg.127]    [Pg.30]    [Pg.476]    [Pg.354]    [Pg.7]    [Pg.387]    [Pg.391]    [Pg.73]    [Pg.3]    [Pg.41]    [Pg.206]    [Pg.236]    [Pg.389]    [Pg.207]    [Pg.141]   


SEARCH



Chromium tripositive

Complexes of Tripositive Cobalt

Oxidation state tripositive

Tripositive elements, chelation

Tripositive ion

Tripositive structure

© 2024 chempedia.info