Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2,2,4-trimethylpentane, radiolysis

Although in some cases radicals were observed as the primary products of radiolysis, they might also be produced in secondary reactions. Thus the production of the (-butyl radical in the radiolysis of neopentane, neohexane and 2,2,4-trimethylpentane was attributed to the addition of hydrogen atoms to isobutylene... [Pg.88]

In the 1470-A. photolysis of cyclohexane-nitrous oxide solutions, nitrous oxide reacts with excited cyclohexane molecules to form nitrogen and oxygen atoms. The reaction of N20 with photoexcited 2,2,4-trimethylpentane molecules is much less efficient than with cyclohexane. In the radiolysis of these solutions, G(N2) is the same for different alkanes at low 5 mM) N20 concentrations. At higher concentrations, G(N2) from the radiolysis of cyclohexane is greater than G(N2) from the radiolysis of 2,2,4-trimethylpentane solutions. The N2 yields from 2,2,4-trimethylpentane are in excellent agreement with the theoretical yields of electrons expected to be scavenged by N20. The yield of N2 in the radiolysis of cyclohexane which is in excess of that formed from electrons is attributed to energy transfer from excited cyclohexane molecules to nitrous oxide. [Pg.485]

Photoionization of the hydrocarbon followed by dissociative electron attachment (Reaction 1) should be considered since the ionization potential of a molecule is less in the liquid phase than it is in the gas phase. For hydrocarbons the ionization potential is 1 to 1.5 e.v. less in the liquid phase (24). The photon energy at 1470 A. is about 1.4 e.v. below the gas-phase ionization potentials of cyclohexane and 2,2,4-trimethylpentane (14). Some ionization may therefore occur, but the efficiency of this process is expected to be low. Photoionization is eliminated as a source of N2 for the following reasons. (1) If photoionization occurred and the electron reacted with nitrous oxide, then O" would be formed. It has been shown in the radiolysis of cyclohexane-nitrous oxide solutions that subsequent reactions of O result in the formation of cyclohexene and dicyclohexyl (I, 16, 17) and very little cyclohexanol (16, Table III). In the photolysis nitrous oxide reduces the yield of cyclohexene and does not affect the yield of dicyclohexyl. This indicates that O is not formed in the photolysis, and consequently N2 does not result from electron capture. (2) A further argument against photoionization is that cyclohexane and 2,2,4-trimethylpentane have comparable gas-phase ionization potentials but exhibit quite different behavior with respect to N2 formation. [Pg.489]

Radiolysis. The photochemical experiments suggest that in the radiolysis a reaction of nitrous oxide with excited molecules would be expected in cyclohexane but should be less important in 2,2,4-trimethylpentane. The radiolysis results (Figure 3 and Table III) show that at nitrous concentrations less than 10 mM, where reactions of excited molecules are unimportant, G(N2) is the same for cyclohexane and 2,2,4-trimethylpentane solutions. At concentrations of nitrous oxide from 20 to 160 mM, G(No) from cyclohexane solutions is greater than G(N2) from 2,2,4-trimethylpentane solutions, and the excess yield increases with the concentration of nitrous oxide. [The nitrogen yields reported here for the concentration range 5-200 mM are in good agreement with those reported by Sherman (20)] Nitrous oxide reduces G(H2) from cyclohexane (16, 17, 18, 20, and Table III), but it has little effect on G(H2) and G(CH4) from 2,2,4-trimethylpentane. [Pg.491]


See other pages where 2,2,4-trimethylpentane, radiolysis is mentioned: [Pg.385]    [Pg.395]    [Pg.397]    [Pg.733]    [Pg.492]    [Pg.493]    [Pg.389]    [Pg.399]    [Pg.401]    [Pg.687]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



2,2,4-Trimethylpentane

2,4,4-TRIMETHYLPENTANAL

Trimethylpentanes

© 2024 chempedia.info