Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trichlorosilane synthesis

Wacker-Chemie GmbH, PU-SV, PO Box 11 40, D-84479 Burghausen, Germany Keywords trichlorosilane synthesis, selectivity, XPS... [Pg.119]

Dkect synthesis is the preparative method that ultimately accounts for most of the commercial siUcon hydride production. This is the synthesis of halosilanes by the dkect reaction of a halogen or haUde with siUcon metal, siUcon dioxide, siUcon carbide, or metal sihcide without an intervening chemical step or reagent. Trichlorosilane is produced by the reaction of hydrogen chloride and siUcon, ferrosiUcon, or calcium sihcide with or without a copper catalyst (82,83). Standard purity is produced in a static bed at 400—900°C. [Pg.23]

Figure 4. shows the route from the high boiling residue of the direct synthesis to silicon carbo-nitride fibers. Methylchlorodisilanes and trichlorosilanes as additives are mixed in a specific ratio and react with methylamine and a small amount of ammonia to form an aminodisilane/oligosilazane. The subsequent polycondensation reaction of this mixture by heating to 250 °C yields a soluble and melt spinnable polysilazane. In comparision with the polysilane the properties of the polysilazane depend on the ratios of the disilanes/silanes and methylamine/ammonia and also on the reaction conditions. [Pg.296]

The asymmetric hydrosilylation that has been most extensively studied so far is the palladium-catalyzed hydrosilylation of styrene derivatives with trichlorosilane. This is mainly due to the easy manipulation of this reaction, which usually proceeds with perfect regioselectivity in giving benzylic silanes, 1-aryl-1-silylethanes. This regioselectivity is ascribed to the formation of stable 7t-benzylpalladium intermediates (Scheme 3).1,S Sa It is known that bisphosphine-palladium complexes are catalytically much less active than monophosphine-palladium complexes, and, hence, asymmetric synthesis has been attempted by use of chiral monodentate phosphine ligands. In the first report published in 1972, menthyldiphenylphosphine 4a and neomenthyldiphenylphosphine 4b have been used for the palladium-catalyzed reaction of styrene 1 with trichlorosilane. The reactions gave l-(trichlorosilyl)-l-phenylethane 2 with 34% and 22% ee, respectively (entries 1 and 2 in Table l).22 23... [Pg.817]

The palladium-catalyzed asymmetric hydrosilylation of styrenes has been applied to the catalytic asymmetric synthesis of l-aryl-l,2-diols from arylacetylenes (Scheme 6).46 Thus, ( )-l-aryl-2-(trichlorosilyl)ethenes, which are readily generated by platinum-catalyzed hydrosilylation of arylacetylenes, were treated with trichlorosilane and the palladium catalyst coordinated with MOP ligand 12f to give 1 -aryl-1,2-bis(silyl)ethanes, oxidation of which produced the enantiomerically enriched (95-98% ee) 1,2-diols. [Pg.821]

The Hiyama coupling offers a practical alternative when selectivity and/or availability of other reagents are problematic. Hiyama et al. coupled alkyltrifluorosilane 74 with 2-bromofuran 73 to give the corresponding cross-coupled product 75 in moderate yield in the presence of catalytic Pd(Ph3P)4 and 3 equivalents of TBAF [65]. In this case, more than one equivalent of fluoride ion was needed to form a pentacoordinated silicate. On the other hand, alkyltrifluorosilane 74 was prepared by hydrosilylation of the corresponding terminal olefin with trichlorosilane followed by fluorination with C11F2. This method provides a facile protocol for the synthesis of alkyl-substituted aromatic compounds. [Pg.281]

The chemistry of silicone halides was recently reviewed by Collins.13 The primary use for SiCU is in the manufacturing of fumed silica, but it is also used in the manufacture of polycrystalline silicon for the semiconductor industry. It is also commonly used in the synthesis of silicate esters. T richlorosilane (another important product of the reaction of silicon or silicon alloys with chlorine) is primarily used in the manufacture of semiconductor-grade silicon, and in the synthesis of organotrichlorosilane by the hydrosilylation reactions. The silicon halohydrides are particularly useful intermediate chemicals because of their ability to add to alkenes, allowing the production of a broad range of alkyl- and functional alkyltrihalosilanes. These alkylsilanes have important commercial value as monomers, and are also used in the production of silicon fluids and resins. On the other hand, trichlorosilane is a basic precursor to the synthesis of functional silsesquioxanes and other highly branched siloxane structures. [Pg.653]

Table 9.34 Synthesis and in situ addition of chiral allenic trichlorosilanes to aldehydes. Table 9.34 Synthesis and in situ addition of chiral allenic trichlorosilanes to aldehydes.
The synthesis of phosphino sulfoximine 97 relied significantly on the successful development of methods pursued in parallel in our group. Whereas palladium-catalyzed cross-couplings between 53 and 98 proceeded in low yield, the copper catalysis with a combination of copper(l) iodide and cesium acetate worked well, affording 99 in up to 83% yield [78]. The resulting phosphine oxides 99 were then reduced to the corresponding phosphines 97 using a mixture of trichlorosilane and triethylamine (Scheme 2.1.1.33). [Pg.168]

Trichlorosilane-f-Amines. A general synthesis of allyltrimethylsilanes is illustrated by a synthesis of (E)-crotyltrimethylsilane (equation I).1... [Pg.322]

For the synthesis of hexasilaprismane, tetrachlorodisilane (RSiCl2—SiC R) and trichlorosilane (RSiCb) are utilized as the starting compounds. The Mg/MgBr2 reagent is quite useful also for the synthesis of hexasilaprismane. A hexasilaprismane derivative, hexakis(2,6-diisopropylphenyl)tetracyclo[2.2.0.02 6.03 5]hexasilane (12), was successfully... [Pg.129]

Fig. 9.3 Activity in the epoxidation of 1-octene with TBHP of Ti-silsesquioxane catalysts as a function of the trichlorosilane concentration in the initial silses-quioxane synthesis mixture. Fig. 9.3 Activity in the epoxidation of 1-octene with TBHP of Ti-silsesquioxane catalysts as a function of the trichlorosilane concentration in the initial silses-quioxane synthesis mixture.
A new parameter space for the synthesis of silsesquioxane precursors was defined by six different trichlorosilanes (R=cyclohexyl, cyclopentyl, phenyl, methyl, ethyl and tert-butyl) and three highly polar solvents [dimethyl sulfoxide (DMSO), water and formamide]. This parameter space was screened as a function of the activity in the epoxidation of 1-octene with tert-butyl hydroperoxide (TBHP) [26] displayed by the catalysts obtained after coordination of Ti(OBu)4 to the silsesquioxane structures. Fig. 9.4 shows the relative activities of the titanium silsesquioxanes together with those of the titanium silsesquioxanes obtained from silsesquioxanes synthesised in acetonitrile. The values are normalised to the activity of the complex obtained by reacting Ti(OBu)4 with the pure cyclopentyl silsesquioxane o7b3 [(c-C5H9)7Si7012Ti0C4H9]. [Pg.218]

Fig. 9.4 Screening of the epoxidation activity of the titanium silsesquioxanes as a function of the solvent and of the trichlorosilanes used in the synthesis of the silsesquioxane precursors. Fig. 9.4 Screening of the epoxidation activity of the titanium silsesquioxanes as a function of the solvent and of the trichlorosilanes used in the synthesis of the silsesquioxane precursors.
Raw stock is sent to the apparatus in tanks 1 installed in the drafting device (one is shown in the figure). Then it is sent by nitrogen flow to the batch boxes trifluoromonochloropropane to batch box 2, trichlorosilane to batch box 3, ethyl bromide to batch box 4, and dibutyl ether (dehydrated with burnt calcium chloride and filtered) to batch box 5. Before the synthesis begins, working mixtures I and II are prepared in apparatus 6. Mixture I consists of trichlorosilane and ethyl bromide, and mixture II consists of trichlorosilane, dibutyl ether, trifluoromonochloropropane and ethyl bromide. Mixture I is sent to batch box 8, and mixture II is sent to batch box 9. All batch boxes and apparatus 6 have jackets or coils (on their external walls) to be cooled with Freon at -15 - -20°C. [Pg.21]


See other pages where Trichlorosilane synthesis is mentioned: [Pg.26]    [Pg.104]    [Pg.26]    [Pg.104]    [Pg.20]    [Pg.8]    [Pg.76]    [Pg.145]    [Pg.165]    [Pg.78]    [Pg.80]    [Pg.83]    [Pg.154]    [Pg.99]    [Pg.831]    [Pg.659]    [Pg.675]    [Pg.257]    [Pg.209]    [Pg.139]    [Pg.13]    [Pg.133]    [Pg.57]    [Pg.350]    [Pg.1809]    [Pg.181]    [Pg.215]    [Pg.217]    [Pg.218]    [Pg.194]    [Pg.666]    [Pg.260]    [Pg.85]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Trichlorosilane

Trichlorosilanes

© 2024 chempedia.info