Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trichlorosilane, enantioselective

Concerning enantioselective processes, Fujihara and Tamura have proved that palladium NPs containing (S)-BINAP (2,2 -bis(diphenylphosphino)-l,l -binaphthyl) as chiral stabiliser, catalyse the hydrosilylation of styrene with trichlorosilane, obtaining (S)-l-phenylethanol as the major isomer (ee = 75%) [42]. In contrast, the palladium complex [Pd(BINAP)(C3H5)]Cl is inactive for the same reaction [43]. [Pg.431]

For the asymmetric hydrosilylation of 1,3-cyclohexadiene (42) (Scheme 3-17), the enantioselectivity is higher in the reaction with phenyldifluorosilane than that with trichlorosilane or methyidichlorosilane. The reaction of 42 with phenyldifluorosilane in the presence of a palladium catalyst coordinated with ferrocenylphosphine... [Pg.83]

Allylic trichlorosilanes have shown promise in the development of methods for enantioselective reactions by use of chiral phosphoramides such as C. [Pg.821]

Cationic palladium complex 121 reductively coupled enynes (Eq. 20) using trichlorosilane as the stoichiometric reductant [71]. This combination of catalyst and silane afforded silylated methylenecyclopentanes such as 122 in good yield from enynes such as 123. Attempts to develop an enantioselective version of this reaction were not successful [71]. When enediyne 124 was cyclized in the presence of trichlorosilane, the reaction favored enyne cycli-zation 126 by a 3 1 ratio over diyne cyclization to 125 (Eq. 21). In contrast, when the more electron-rich dichloromethylsilane was used as the reductant, diyne cyclization product 125 was preferred in a ratio of 4 1 [71]. Selectivities of up to 10 1 for enyne cyclization were observed, depending on the substrate employed [72],... [Pg.242]

The Pd/MOP combination has proved active for the asymmetric hydrosilylation of cyclic alkenes and dienes. Thus treatment of norbornene with HSiCl3 at 0 °C for 24 h in the presence of 0.01 mol.% of M eO-MOIV[Pd(// -C3H5)Cl]2 gave quantitative yield of evo-2-(trichlorosilyl)norbornane oxidation produced the corresponding alcohol in 93% ee (Equation (12)). Lowering the temperature (to — 20 °C) increased this to a 96% ee. Both mono- and difunctionalization of nbd has proved possible, depending upon the quantity of trichlorosilane used (Scheme 22). In both reactions, extremely good enantioselectivities are observed 113... [Pg.283]

Pu and co-workers incorporated atropisomeric binaphthols in polymer matrixes constituted of binaphthyl units, the macromolecular chiral ligands obtained being successfully used in numerous enantioselective metal-catalyzed reactions,97-99 such as asymmetric addition of dialkylzinc reagents to aldehydes.99 Recently, they also synthesized a stereoregular polymeric BINAP ligand by a Suzuki coupling of the (R)-BINAP oxide, followed by a reduction with trichlorosilane (Figure 10).100... [Pg.453]

In the asymmetric hydrosilylation of 1,3-cyclohexadiene 38 (Scheme 10, Table 4), catalyzed by chiral ferrocenylphosphines 5 and 40, the enantioselectivity is higher with phenyldifluorosilane than that with trichlorosilane or methyldichlorosilane (entries 1—4). The reaction of 38 with phenyldifluorosilane in the presence of a palladium catalyst coordinated with ferrocenylphosphine 40b gave allylsilane (A)-39c with 77% ee.58,59 The use of (j3-N-sulfonylaminoalkyl (phosphine 35a for the reaction of 38 with methyldichlorosilane exhibited the same level of asymmetric induction (entries 5-6).53 In this asymmetric hydrosilylation, combination of trichlorosilane and... [Pg.824]

Linear 1,3-dienes have also been subjected to the palladium-catalyzed asymmetric hydrosilylation (Scheme 12, Table 5). Reaction of 1-phenyl-l,3-butadiene 46a with HSiClj catalyzed by palladium-(/ )-(A)-PPFA 5a gave a mixture of regioisomeric allysilanes 47, and 48 and 49, in a ratio of 94 to 6, the major isomer 47 and the minor isomer 48 being 64% ee (S) and 30% ee (R), respectively (entry l).60 7r-Allylpalladium intermediate 50 was proposed for this hydrosilylation. Use of phenyldifluorosilane in place of trichlorosilane slightly improved the enantioselectivity (entry 8).58,61 Similar level of enantioselectivity (71-72% ee) was reported for the reaction using Ar-MOP ligand 37f (entry 11) and its dioctylated derivative 37g (entry 12).57a... [Pg.826]

A new type of asymmetric hydrosilylation which produces axially chiral allenylsilanes has been reported by use of a palladium catalyst coordinated with the bisPPFOMe ligand 51b.64 The hydrosilylation of l-buten-3-ynes substituted with bulky groups such as tert-butyl at the acetylene terminus took place in a 1,4-fashion to give allenyl(trichloro)-silanes with high selectivity. The highest enantioselectivity (90% ee) was observed in the reaction of 5,5-dimethyl-T hexen-3-yne with trichlorosilane catalyzed by the bisPPFOMe-palladium complex (Scheme 13). [Pg.828]

A detailed study of the mechanism of the enantioselective palladium catalyzed hydrosilylation of styrene with trichlorosilane was carried out with combined QM/MM ab initio molecular dynamics simulations. A number of fundamental mechanistic questions have been addressed, including the main features of the catalytic cycle, as well as the specific nature of the regioselectivity and enatioselectivity. [Pg.247]

The regioselectivity (branched linear) for the addition of trichlorosilane to 1-alke-nes is in a range of 80 20 93 7 [67], In the case of 1-aryl-1-alkenes such as (2-chlorophenyl)ethene (124), l-pheny)prop-l-ene (125), and indene, the regioselectivity reaches as high as 99 1, although the enantioselectivity for the formation of the correspond-... [Pg.130]

S)-Prolinc-dcrivcd phosphoramides catalyse enantioselective allylation of aromatic aldehydes with allylic trichlorosilanes.90 Chiral a-aminoaldehydes have been allylated diastereoselectively with various reagents.91... [Pg.17]

A new, metal-free protocol involving (heteroaryl)oxazoline catalysts for the enantioselective reduction of aromatic ketones (up to 94% ee) and ketimines (up to 87% ee) with trichlorosilane has been developed. The reaction is characterized by an unusual, long-ranging chiral induction.The enantiodifferentiation is presumed to be aided by aromatic interactions between the catalyst and the substrate.360 Asymmetric reduction of A-arylketimines with trichlorosilane is catalysed by A-methyl-L-amino acid-derived Lewis-basic organocatalysts with high enantioselectivity (up to 92% ee) 61... [Pg.138]


See other pages where Trichlorosilane, enantioselective is mentioned: [Pg.517]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.83]    [Pg.283]    [Pg.817]    [Pg.817]    [Pg.821]    [Pg.824]    [Pg.825]    [Pg.829]    [Pg.830]    [Pg.831]    [Pg.173]    [Pg.214]    [Pg.356]    [Pg.70]    [Pg.546]    [Pg.72]    [Pg.127]   


SEARCH



Amination reactions trichlorosilane enantioselective

Imines trichlorosilane enantioselective

Phosphine catalysts trichlorosilane enantioselective

Prolines trichlorosilane enantioselective

Trichlorosilane

Trichlorosilane, enantioselective chiral Lewis bases

Trichlorosilanes

© 2024 chempedia.info