Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transuranium elements aqueous chemistry

Despite the extremely low concentrations of the transuranium elements in water, most of the environmental chemistry of these elements has been focused on their behavior in the aquatic environment. One notes that the neutrality of natural water (pH = 5-9) results in extensive hydrolysis of the highly charged ions except for Pu(V) and a very low solubility. In addition, natural waters contain organics as well as micro- and macroscopic concentrations of various inorganic species such as metals and anions that can compete with, complex, or react with the transuranium species. The final concentrations of the actinide elements in the environment are thus the result of a complex set of competing chemical reactions such as hydrolysis, complexation, redox reactions, and colloid formation. As a consequence, the aqueous environmental chemistry of the transuranium elements is significantly different from their ordinary solution chemistry in the laboratory. [Pg.458]

LaChapette, T. J., L. B. Magnusson, and J. C. Hindman The Chemistry of Neptunium. First Preparation and Solubilities of some Neptunium Compounds in Aqueous Solution. In G. T. Seaborg, J. J. Katz, and W. M. Manning (Eds.), The Transuranium Elements, National Nuclear Energy Series, Div. IV, Vol. 14B, p. 1097. New York McGraw-Hill 1949. [Pg.115]

Abstract This chapter reviews the historical perspective of transuranium elements and the recent progress in the production and study of nuclear properties of transuranium nuclei. Exotic decay properties of heavy nuclei are also introduced. Chemical properties of transuranium elements in aqueous and solid states are summarized based on the actinide concept. For new application of studying transuranium elements, an X-ray absorption fine structure (XAFS) method and computational chemistry are surveyed. [Pg.818]

Experiences with aqueous chemistry and behavior of the transuranium elements obtained in nuclear fuel reprocessing and plutonium processing are only of limited relevance for PWR primary coolants with the extremely low concentrations of these elements in a boric acid—LiOH solution of varying composition. The plutonium polymers which are formed in less acid and neutral solutions and which have been reported to show the highest plate-out potential (e. g. Wilkins and Wisbey,... [Pg.224]

It has been more than fifty years since the discovery of the transuranium elements. The initial activities in this field established the fundamental solution and solid-state chemistry of the first two of these elements and their compounds under the auspices of the Manhattan Project. New separation methods including solvent extraction techniques and uranium isotope separation played a leading role in these programs. Tracer techniques were widely used to determine solubilities (or solubility liinits) of transuranium compounds as well as to obtain information about the coorination chemistry in aqueous solution. A little later, special solvent extraction and ion-exchange techniques were developed to isolate pure transplutonium elements on the milligram and smaller scale. The second edition of The Chemistry of the Actinide Elements, published in 1986 (i), covers most of these topics. A detailed overview of the history of transuranium chemistry is given in Transuranium Elements A Half Century (2). [Pg.361]

See the general references in the Introduction, and some more-speciahzed books [4, 6-58], Some articles in journals discuss actinide complexation and thermodynamics at elevated temperatures [59] classifying lanthanoids by multivariate analysis, albeit with results that seem hard to defend [60] designing sequestering agents for Pu and other actinoids [61] lanthanoid compounds with complex inorganic anions, part of a thematic issue on lanthanoid chemistry [62] Pm, discovery and chemistiy [63] recent Sc chemistiy [64] actinoid complexes [65] the transuranium elements [66] actinoid complexes with OH and [67] coordination numbers [68] the aqueous chemistiy and thermodynamics of Eu [69] photooxidation-reduction of Np and Pu [70] review of Pm [71] Rth thermochemistiy [72] unusual oxidation states of Ln and An [73] and Rth chemistiy [74]. [Pg.87]


See other pages where Transuranium elements aqueous chemistry is mentioned: [Pg.5]    [Pg.698]    [Pg.967]    [Pg.269]    [Pg.444]   
See also in sourсe #XX -- [ Pg.1160 ]




SEARCH



Aqueous chemistry

Element chemistry

Transuranium

Transuranium elements

© 2024 chempedia.info