Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmetallation derivatives

Thallation of aromatic compounds with thallium tris(trifluoroacetate) proceeds more easily than mercuration. Transmetallation of organothallium compounds with Pd(II) is used for synthetic purposes. The reaction of alkenes with arylthallium compounds in the presence of Pd(Il) salt gives styrene derivatives (433). The reaction can be made catalytic by use of CuCl7[393,394], The aryla-tion of methyl vinyl ketone was carried out with the arylthallium compound 434[395]. The /9-alkoxythallium compound 435, obtained by oxythallation of styrene, is converted into acetophenone by the treatment with PdCh[396]. [Pg.83]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

The transmetallation of lithio derivatives with either magnesium bromide or zinc chloride has been employed to increase further their range of synthetic application. While the reaction of l-methyl-2-pyrrolyllithium with iodobenzene in the presence of a palladium catalyst gives only a poor yield (29%) of coupled product, the yield can be dramatically improved (to 96%) by first converting the lithium compound into a magnesium or zinc derivative (Scheme 83) (81TL5319). [Pg.81]

Reactivity and yields are greatly enhanced by the presence of 0.5-1% Na in the Li. The reaction is also generally available for the preparation of metal alkyls of the heavier Group 1 metals. Lithium aryls are best prepared by metal-halogen exchange using LiBu" and an aryl iodide, and transmetalation is the most convenient route to vinyl, allyl and other unsaturated derivatives ... [Pg.102]

Tliese transmetalations may be performed not only witli copperil) halides in DMF [ 104], bul also by using Me2CuIi-LiCN. Tliis Itansmetaladon has been used in tlie s7titbesis of prostaglandin derivatives iScbeme 2.51) [105]. [Pg.68]

Two approaches for the synthesis of allyl(alkyl)- and allyl(aryl)tin halides are thermolysis of halo(alkyl)tin ethers derived from tertiary homoallylic alcohols, and transmetalation of other allylstannanes. For example, dibutyl(-2-propenyl)tin chloride has been prepared by healing dibutyl(di-2-propenyl)stannane with dibutyltin dichloride42, and by thermolysis of mixtures of 2,3-dimethyl-5-hexen-3-ol or 2-methyl-4-penten-2-ol and tetrabutyl-l,3-dichlorodistannox-ane39. Alternatively dibutyltin dichloride and (dibutyl)(dimethoxy)tin were mixed to provide (dibutyl)(methoxy)tin chloride which was heated with 2,2,3-trimethyl-5-hexen-3-ol40. [Pg.365]

If the following glycine derived ester is deprotonated and transmetalated with the (/ ,/ )-lartaric acid derived titanium complex, and then added to butanal, the sy -a-amino-/Thydroxy ester, which is enantiomeric to the products obtained above, is formed. [Pg.477]

In another approach, a glucose-derived titanium enolate is used in order to accomplish stereoselective aldol additions. Again the chiral information lies in the metallic portion of the enolate. Thus, the lithiated /m-butyl acetate is transmetalated with chloro(cyclopentadienyl)bis(l,2 5,6-di-0-isopropylidene- -D-glucofuranos-3-0-yl)titanium (see Section I.3.4.2.2.I. and 1.3.4.2.2.2.). The titanium enolate 5 is reacted in situ with aldehydes to provide, after hydrolysis, /i-hydroxy-carboxylic acids with 90 95% ee and the chiral auxiliary reagent can be recovered76. [Pg.488]

The same stereochemical result is obtained when the horyl cnolate 4, derived from sultam 1 is transmetalated by the addition of titanium(lV) chloride and subsequently reacted with aldehydes106g. [Pg.505]

Table 2 Formation of cyclopentadienyl derivatives 75 via transmetallated alkyne-inserted rhodium-carbene complexes (see Scheme 15)... Table 2 Formation of cyclopentadienyl derivatives 75 via transmetallated alkyne-inserted rhodium-carbene complexes (see Scheme 15)...
Under comparable reaction conditions, no C—H bond activation is observed for adducts of 6-Phbipy and 6-Rbipy. Nevertheless, [Au(N,N,C)Cl] derivatives can be obtained with 6-Phbipy [18] and with 6-tBubipy (tBu = CMe3) [20]. The former is obtained by a transmetallation reaction of the arylmercury(II) derivative with [AuClJ, while activation of a C(sp )—H bond of the tert-butyl substituent is accomplished by reaction of the Au(N)Cl3 adduct 3 (N = 6-tBubipy) with AgBp4 in the presence of excess ligand (Scheme 2.2). [Pg.49]

In all these reactions, the acylating reagent reacts with the active Pd(0) catalyst to give an acyl Pd(II) intermediate. Transmetallation by the organoboron derivative and reductive elimination generate the ketone. [Pg.747]

An enantioselective variant of the diene cydization reaction has been developed by application of chiral zirconocene derivatives, such as Brintzinger s catalyst (12) [10]. Mori and co-workers demonstrated that substituted dial-lylbenzylamine 25 could be cyclized to pyrrolidines 26 and 27 in a 2 1 ratio using chiral complex 12 in up to 79% yield with up to 95% ee (Eq. 4) [ 17,18]. This reaction was similarly applied to 2-substituted 1,6-dienes, which provided the analogous cyclopentane derivatives in up to 99% ee with similar diastereoselectivities [19]. When cyclic, internal olefins were used, spirocyclic compounds were isolated. The enantioselection in these reactions is thought to derive from either the ate or the transmetallation step. The stereoselectivity of this reaction has been extended to the selective reaction of enantiotopic olefin compounds to form bicyclic products such as 28, in 24% yield and 59% ee after deprotection (Eq. 5) [20]. [Pg.223]

Silver(I) complexes with macrocyclic nitrogen ligands are also very numerous. Mono- or homodi-nuclear silver-containing molecular clefts can be synthesized from the cyclocondensation of functionalized alkanediamines or triamines with 2,6-diacetylpyridine, pyridine-2,6-dicarbalde-hyde, thiophene-2,5-dicarbaldehyde, furan-2,5-dicarbaldehyde, or pyrrole-2,5-dicarbaldehyde in the presence of silver(I).486 97 The clefts are derived from bibracchial tetraimine Schiff base macrocycles and have been used, via transmetallation reactions, to complex other metal centers. The incorporation of a range of functionalized triamines has provided the conformational flexibility to vary the homodinuclear intermetallic separation from ca. 3 A to an excess of 6 A, and also to incorporate anions as intermetallic spacers. Some examples of the silver(I) complexes obtained are shown in Figure 5. [Pg.934]

Carbene complexes have also been prepared by transmetallation reactions. Lithiated azoles react with gold chloride compounds and after protonation or alkylation the corresponding dihydro-azol-ylidene compounds, e.g., (381) or (382), are obtained.22 9-2264 Silver salts of benz-imidazol have also been used to obtain carbene derivatives.2265 Mononuclear gold(I) carbene complexes also form when trimeric gold(I) imidazolyl reacts with ethyl chlorocarbonate or ethyl idodate.2266,2267 The treatment of gold halide complexes with 2-lithiated pyridine followed by protonation or alkylation also yields carbene complexes such as (383).2268 Some of these carbene complexes show luminescent properties.2269-2271... [Pg.1032]

As part of a study into the activation of metal catalysts in thiol or thiolate-rich environments, X-substituted coenzyme M and thioglycolate derivatives were investigated in a Ni-catalyzed crosscoupling reaction with a zinc co-factor the role of zinc was shown to be in a transmetallation process.571... [Pg.1197]

An alternative approach to reduce the levels of impurity (VII) would be to have a "transient" existence of the lithio species, so that it reacts instantaneously with trialkyl borate to form the aryl boronate, prior to being quenched by any extraneous proton source to form (VII). Thus, the preparation of boronic acid (II) was improved by changing the order of the reagents. The slow addition of n-butvl lithium also controls the exotherm of the reaction. There was no reaction observed between n-butyl lithium and triisopropyl borate (to form any butyl boronic acid), nor was there any formation of 2-butyl derivative of (VII) formed by reaction between butyl bromide and the lithio species. The reaction is veiy fast and as soon as the addition of n-butyl lithium is completed the reaction is finished. This indicates a rapid transmetallation and instantaneous boronation of the lithio species. The reaction is very much a... [Pg.219]

Additional publications from Sanford et al. describe the full exploration of palladium-catalyzed chelate-directed chlorination, bromination, and iodination of arenes using N-halosuccinimides as the terminal oxidant <06T11483>. Moreover, an electrophilic fluorination of dihalopyridine-4-carboxaldehydes was reported by Shin et al. <06JFC755>. This was accomplished via transmetalation of the bromo derivative, followed by treatment with A-fluorobenzenesulfinimide as the source of electrophilic fluorine. [Pg.320]


See other pages where Transmetallation derivatives is mentioned: [Pg.217]    [Pg.1]    [Pg.217]    [Pg.1]    [Pg.227]    [Pg.240]    [Pg.350]    [Pg.83]    [Pg.35]    [Pg.102]    [Pg.17]    [Pg.48]    [Pg.72]    [Pg.98]    [Pg.109]    [Pg.201]    [Pg.64]    [Pg.136]    [Pg.137]    [Pg.230]    [Pg.36]    [Pg.38]    [Pg.50]    [Pg.253]    [Pg.226]    [Pg.1066]    [Pg.1203]    [Pg.217]    [Pg.217]    [Pg.98]    [Pg.306]    [Pg.327]    [Pg.331]    [Pg.343]    [Pg.88]   
See also in sourсe #XX -- [ Pg.520 ]




SEARCH



Transmetalation

Transmetalations

Transmetallation

Transmetallations

© 2024 chempedia.info