Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition state Hammond postulate

He also assumed that the transition state is early, so that there is little bond breaking or bond making in the transition states (Hammond postulate [11]), and that the arrangement of the three ligands on the a carbon are therefore the same in the transition state as they are in the starting materials eclipsed. [Pg.122]

One of the focal points of mechanistic interest has been into the nature of the transition state. A postulate which bears heavily on this topic and which is now most commonly referred to as the Hammond postulate (Hammond, 1955) has become central in the study of transition state structure. Hammond s postulate may be stated as follows the interconversion of two states of similar energy on a reaction pathway will involve only a small amount of structural reorganization. A precise interpretation of this postulate leads only to the limited conclusion that transition states of highly exothermic reactions are similar in structure and energy to reactants, while for strongly endothermic reactions transition states resemble products. [Pg.71]

The energy relationships in the diagram are not only useful in their own right, but also aid in understanding the structural changes occurring at the transition state. Hammond s postulate tells us that if two states occur consecutively, the closer they are in energy, the more similar they are in structure. [Pg.182]

Hammond added that "in highly exothermic steps it will be expected that the transition states will resemble reactants closely and in endothermic steps the products will provide the best models for the transition states." The postulate is a logical consequence of the idea that the energy of a chemical entity is a function of its structure. Therefore, two species that occur consecutively during a reaction and that have very similar energies might be expected to have very similar structures as well. In this context, the phrase "similar structures" means similar coordinates on the horizontal axis of the reaction coordinate diagram. [Pg.362]

Hammond s postulate (Section 4 8) Pnnciple used to deduce the approximate structure of a transition state If two states such as a transition state and an unstable intermediate de rived from it are similar in energy they are believed to be similar in structure... [Pg.1285]

Because the rates of chemical reactions are controlled by the free energy of the transition state, information about the stmcture of transition states is crucial to understanding reaction mechanism. However, because transition states have only transitory existence, it is not possible to make experimental measurements that provide direct information about their structure.. Hammond has discussed the circumstances under which it is valid to relate transition-state stmcture to the stmcture of reactants, intermediates, and products. His statements concerning transition-state stmcture are known as Hammond s postulate. Discussing individual steps in a reaction mechanism, Hammond s postulate states if two states, as, for example, a transition state and an unstable intermediate, occur consecutively during a reaction process and have neariy the same energy content, their interconversion will involve only a small reorganization of molecular stmcture. ... [Pg.217]

The significance of the concept incorporated in Hammond s postulate is that, in appropriate cases, it permits discussion of transition-state structure in terms of the reactants, inteimediates, or products in a multistep reaction sequence. The postulate indicates that the cases in which such comparison is appropriate are those in which the transition state is close in energy to the reactant, intermediate, or product. Chemists sometimes speak of early or late transition states. An early transition state is reactant-like whereas a late transition state is product-like. [Pg.218]

The substituent effects in aromatic electrophilic substitution are dominated by resonance effects. In other systems, stereoelectronic effects or steric effects might be more important. Whatever the nature of the substituent effects, the Hammond postulate insists diat structural discussion of transition states in terms of reactants, intermediates, or products is valid only when their structures and energies are similar. [Pg.219]

Application of Hammond s postulate indicates that the transition state should resemble the product of the first step, the carbocation intermediate. Ionization is facilitated by factors that either lower the energy of the carbocation or raise the energy of the reactant. The rate of ionization depends primarily on how reactant structure and solvent ionizing power affect these energies. [Pg.265]

Important differences are seen when the reactions of the other halogens are compared to bromination. In the case of chlorination, although the same chain mechanism is operative as for bromination, there is a key difference in the greatly diminished selectivity of the chlorination. For example, the pri sec selectivity in 2,3-dimethylbutane for chlorination is 1 3.6 in typical solvents. Because of the greater reactivity of the chlorine atom, abstractions of primary, secondary, and tertiary hydrogens are all exothermic. As a result of this exothermicity, the stability of the product radical has less influence on the activation energy. In terms of Hammond s postulate (Section 4.4.2), the transition state would be expected to be more reactant-like. As an example of the low selectivity, ethylbenzene is chlorinated at both the methyl and the methylene positions, despite the much greater stability of the benzyl radical ... [Pg.703]

The Hammond postulate is a valuable criterion of mechanism, because it allows a reasonable transition state structure to be drawn on the basis of knowledge of the reactants and products and of energy differences between the states (i.e., AG and AG°). Throughout this chapter we have located transition states in accordance with the Hammond postulate. [Pg.221]

According to this very simple derivation and result, the position of the transition state along the reaction coordinate is determined solely by AG° (a thermodynamic quantity) and AG (a kinetic quantity). Of course, the potential energy profile of Fig. 5-15, upon which Eq. (5-60) is based, is very unrealistic, but, quite remarkably, it is found that the precise nature of the profile is not important to the result provided certain criteria are met, and Miller " obtained Eq. (5-60) using an arc length minimization criterion. Murdoch has analyzed Eq. (5-60) in detail. Equation (5-60) can be considered a quantitative formulation of the Hammond postulate. The transition state in Fig. 5-9 was located with the aid of Eq. (5-60). [Pg.224]

Obtain the partial CH and HF bond distances in eacl transition state, and compare them to the CH and HF bon( distances in propane and hydrogen fluoride, respectively Does the Hammond Postulate correctly predict whicl bond distances will be most similar Explain. [Pg.64]

Use of the Hammond Postulate requires that the reverse reactions both be fast. Obtain energies for the transition states leading to 1-propyl and 2-propyl radicals ipropane+Br end and propane+Br center), and draw a reaction energy diagram for each (place the diagrams on the same axes). Is use of the Hammond Postulate justified Compare the partial CH and HBr bond distances in each transition state to the corresponding distances in propane and hydrogen bromide, respectively. Does the Hammond Postulate correctly predict which bond distances will be most similar Explain. [Pg.65]

Obtain the energies of propene, dimethylborane, and 1-propyldimethyl borane, and calculate AH n for dimethylborane addition. Is this reaction exothermic or endothermic Use this result and the Hammond Postulate to predict whether the transition state will be more reactant like or more product like . Compare the geometry of the transition state to that of the reactants and products. Does the Hammond Postulate correctly anticipate the structure of the transition state Explain. [Pg.112]

Examine the structures of the two transition states (chlorine atom+methane and chlorine+methyI radical). For each, characterize the transition state as early (close to the geometry of the reactants) or as late (close to the geometry of the products) In Ught of the thermodynamics of the individual steps, are your results anticipated by the Hammond Postulate Explain. [Pg.238]

Would you describe the transition state for the Claisen rearrangement as early (like reactants), late (like products) or in between Given the overall thermodynamics of reaction, do you conclude that the Hammond Postulate applies Explain. [Pg.278]

An explanation of the relationship between reaction rate and intermediate stability was first advanced in 1955. Known as the Hammond postulate, the argument goes like this transition states represent energy maxima. They are high-energy activated complexes that occur transiently during the course of a reaction and immediately go on to a more stable species. Although we can t... [Pg.197]

Hammond postulate The structure of a transition state resembles the structure of the nearest stable species. Transition states for endergonic steps structurally resemble products, and transition states for exergonic steps structurally resemble reactants. [Pg.198]

How does the Hammond postulate apply to electrophilic addition reactions The formation of a catbocation by protonation of an alkene is an endergonic step. Thus, the transition state for alkene protonation structurally resembles the... [Pg.198]

Markovnikov s rule can be restated by saying that, in the addition of HX to an aikene, the more stable carbocation intermediate is formed. This result is explained by the Hammond postulate, which says that the transition state of an exergonic reaction step structurally resembles the reactant, whereas the transition state of an endergonic reaction step structurally resembles the product. Since an aikene protonation step is endergonic, the stability of the more highly substituted carbocation is reflected in the stability of the transition state leading to its formation. [Pg.204]

The isobutyl cation spontaneously rearranges to the tart-butyl cation by a hydride shift. Is the rearrangement exergonic or endergonic Draw what you think the transition state for the hydride shift might look like according to the Hammond postulate. [Pg.210]

The enhanced selectivity of alkane bromination over chlorination can be explained by turning once again to the Hammond postulate. In comparing the abstractions of an alkane hydrogen by Cl- and Br- radicals, reaction with Br- is less exergonic. As a result, the transition state for bromination resembles the alkyl radical more closely than does the transition state for chlorination, and the stability of that radical is therefore more important for bromination than for chlorination. [Pg.338]

According to the Hammond postulate (Section 6.10), any factor that stabilizes a high-energy intermediate also stabilizes the transition state leading to that inlermediate. Since the rate-limiting step in an S l reaction is the spontaneous, unimolecLilar dissociation of the substrate to yield a carbocation, the reaction is favored whenever a stabilized carbocation intermediate is formed. The more stable the carbocation intermediate, the faster the S l reaction. [Pg.376]

Hammond postulate (Section 6.10) A postulate stating that we can get a picture of what a given transition state looks like by looking at the structure of the nearest stable species. Exergonic reactions have transition states that resemble reactant endergonic reactions have transition states that resemble product. [Pg.1243]

Radical additions are typically highly exothermic and activation energies are small for carbon30-31 and oxygen centered32,33 radicals of the types most often encountered in radical polymerization, Thus, according to the Hammond postulate, these reactions are expected to have early reactant-like transition states in which there is little localization of the free spin on C(J. However, for steric factors to be important at all, there must be significant bond deformation and movement towards. sp hybridization at Cn. [Pg.20]

This correlation between /7-values for rates and equilibria reflects a long-established principle of physical organic chemistry, the so-called Hammond postulate (Hammond, 1955 see also Farcasiu, 1975). This postulate states that in a series of related reactions the transition state becomes more product-like as the positive enthalpy differences between reagents and products increase. [Pg.157]


See other pages where Transition state Hammond postulate is mentioned: [Pg.1262]    [Pg.154]    [Pg.1267]    [Pg.1262]    [Pg.154]    [Pg.1267]    [Pg.367]    [Pg.164]    [Pg.211]    [Pg.375]    [Pg.142]    [Pg.156]    [Pg.217]    [Pg.218]    [Pg.558]    [Pg.564]    [Pg.156]    [Pg.220]    [Pg.221]    [Pg.232]    [Pg.64]    [Pg.65]    [Pg.198]    [Pg.338]    [Pg.242]   
See also in sourсe #XX -- [ Pg.22 ]

See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.377 , Pg.496 ]




SEARCH



Hammond

Hammond postulate

Hammonds Postulate

Transition state postulate

© 2024 chempedia.info