Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transference polymer electrolytes

By comparing impedance results for polypyrrole in electrolyte-polymer-electrolyte and electrode-polymer-electrolyte systems, Des-louis et alm have shown that the charge-transfer resistance in the latter case can contain contributions from both interfaces. Charge-transfer resistances at the polymer/electrode interface were about five times higher than those at the polymer/solution interface. Thus the assignments made by Albery and Mount,203 and by Ren and Pickup145 are supported, with the caveat that only the primary source of the high-frequency semicircle was identified. Contributions from the polymer/solution interface, and possibly from the bulk, are probably responsible for the deviations from the theoretical expressions/45... [Pg.583]

The lithium transference number (l,) of these organoboron polymer electrolytes was evaluated by combination of dc polarization and ac impedance methods, as reported by Evans et al44 (Table 1). The observed t+ at 30°C was 0.50-0.35, indicating that anions were significantly trapped in these systems. Owing to the stronger Lewis acidity of the alkylborane unit, alkylborane-type polymers showed relatively higher t+. [Pg.196]

Table 1 Lithium Transference Number t+ for Organoboron Polymer Electrolytes... Table 1 Lithium Transference Number t+ for Organoboron Polymer Electrolytes...
The lithium transference number (t+) of a polymer bearing PEO550 side chain/LiCF3S03 was found to be 0.38 at 30°C. This value implies that anions were effectively trapped by organoboron units, similar to linear organoboron polymer electrolytes. [Pg.198]

A variety of organoboron polymer electrolytes were successfully prepared by hydroboration polymerization or dehydrocoupling polymerization. Investigations of the ion conductive properties of these polymers are summarized in Table 7. From this systematic study using defined organoboron polymers, it was clearly demonstrated that incorporation of organoboron anion receptors or lithium borate structures are fruitful approaches to improve the lithium transference number of an ion conductive matrix. [Pg.210]

Interestingly, the nonpolyether-type polymer electrolyte 7 showed a relatively high lithium transference number of 0.47 in the presence of LiTFSI. This is possibly due to the absence of strong binding of ether oxygen to the lithium cation. Moreover, anion trapping of the boron atom is not retarded by coordination of oxygen to the... [Pg.210]

To date there have been few reliable measurements of Hittorf transference numbers in solid polymer electrolytes because of experimental difficulties in applying the technique. Leveque, Le Nest, Gandini and Cheradame (1983) have, however, applied it to highly cross-linked networks where cells could be formed using a series of non-adherent thin... [Pg.155]

Fig. 9.11 Schematic of the electrochemical p-doping process of polymer film electrodes, involving transfer of electrolyte anions A". Fig. 9.11 Schematic of the electrochemical p-doping process of polymer film electrodes, involving transfer of electrolyte anions A".
A lithium ion transference number significantly less than 1 is certainly an undesired property, because the resultant overwhelming anion movement and enrichment near electrode surfaces would cause concentration polarization during battery operation, especially when the local viscosity is high (such as in polymer electrolytes), and extra impedance to the ion transport would occur as a consequence at the interfaces. Fortunately, in liquid electrolytes, this polarization factor is not seriously pronounced. [Pg.80]

During the operation of a polymer-electrolyte fuel cell, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Only through fimdamental modeling, based on physical models developed from experimental observations, can the processes and operation of a fuel cell be truly understood. This review examines and discusses the various regions in a fuel cell and how they have been modeled. [Pg.440]

Nafion is a copolymer of poly(tetrafluoroethylene) and polysulfonyl fluoride vinyl ether. It has fixed anions, which are sulfonic acid sites, and consequently, by electroneutrality, the concentration of positive ions is fixed. Furthermore, the transference number of protons in this system is 1, which greatly simplifies the governing transport equations, as seen below. There can be different forms of Nafion in terms of the positive counterion (e.g., proton, sodium, etc.). Most models deal only with the proton or acid form of Nafion, which is the most common form used in polymer-electrolyte fuel cells due to its high proton conductivity. [Pg.451]

Finally, there are some miscellaneous polymer-electrolyte fuel cell models that should be mentioned. The models of Okada and co-workers - have examined how impurities in the water affect fuel-cell performance. They have focused mainly on ionic species such as chlorine and sodium and show that even a small concentration, especially next to the membrane at the cathode, impacts the overall fuelcell performance significantly. There are also some models that examine having free convection for gas transfer into the fuel cell. These models are also for very miniaturized fuel cells, so that free convection can provide enough oxygen. The models are basically the same as the ones above, but because the cell area is much smaller, the results and effects can be different. For example, free convection is used for both heat transfer and mass transfer, and the small... [Pg.482]

The same electron transfer was investigated in a polyethyleneoxide film known to be a polymer electrolyte capable of transporting ions. The electron transfer mechanism was analyzed to take place by both static and dynamic mechanisms,33) the electron transfer distance was estimated to be 1.7 nm, and the dynamic rate constant was 4.6 x 106 M 1s 1, which is two orders of magnitude lower than that in an aqueous solution. [Pg.167]

In PEMFC systems, water is transported in both transversal and lateral direction in the cells. A polymer electrolyte membrane (PEM) separates the anode and the cathode compartments, however water is inherently transported between these two electrodes by absorption, desorption and diffusion of water in the membrane.5,6 In operational fuel cells, water is also transported by an electro-osmotic effect and thus transversal water content distribution in the membrane is determined as a result of coupled water transport processes including diffusion, electro-osmosis, pressure-driven convection and interfacial mass transfer. To establish water management method in PEMFCs, it is strongly needed to obtain fundamental understandings on water transport in the cells. [Pg.202]

It is the purpose of this chapter to introduce photoinduced charge transfer phenomena in bulk heterojunction composites, i.e., blends of conjugated polymers and fullerenes. Phenomena found in other organic solar cells such as pristine fullerene cells [11,12], dye sensitised liquid electrolyte [13] or solid state polymer electrolyte cells [14], pure dye cells [15,16] or small molecule cells [17], mostly based on heterojunctions between phthalocyanines and perylenes [18] or other bilayer systems will not be discussed here, but in the corresponding chapters of this book. [Pg.2]

Figure 30 Schematic of the UHV/antechamber/transfer chamber system for electrochemical measurements involving solid polymer electrolytes. Insert A provides an exploded view of the HOPG(bp) sample holder and Li[C/R]/PE0(LiC104) stainless steel holder (SSH) arrangement attached to both magnetically coupled manipulators. Insert B shows in detail the assembled H0PG(bp)/PE0(LiC104) cell in the UHV chamber. MCM = magnetically coupled manipulator GV = gate valve N = nipple CN = ceramic nipple SSH = stainless steel holder TMP = turbomolecular pump. (From Ref. 6.)... Figure 30 Schematic of the UHV/antechamber/transfer chamber system for electrochemical measurements involving solid polymer electrolytes. Insert A provides an exploded view of the HOPG(bp) sample holder and Li[C/R]/PE0(LiC104) stainless steel holder (SSH) arrangement attached to both magnetically coupled manipulators. Insert B shows in detail the assembled H0PG(bp)/PE0(LiC104) cell in the UHV chamber. MCM = magnetically coupled manipulator GV = gate valve N = nipple CN = ceramic nipple SSH = stainless steel holder TMP = turbomolecular pump. (From Ref. 6.)...
In a H2/air fuel cell, the protons produced at the anode side need to be transferred to the cathode side to react with 02. This requires a proton transport electrolyte. Nafion membranes, composed of a perfluorosulfonated polymer, are the most commonly used polymer electrolyte membranes to conduct protons. The structure of the Nafion membrane is shown in Figure 1.5. Nafion can take on a... [Pg.7]

The ionic resistance of a polymer electrolyte membrane is an important parameter in determining the mobility of protons through the membrane and the corresponding voltage loss across the membrane. Currently, the most commonly used membranes in PEM fuel cells are Nafion membranes produced by DuPont. However, these membranes are limited to low-temperature uses (usually below 80°C) because membrane dehydration at high temperatures can lead to reduced water content and then a lower proton transfer rate, resulting in a significant decrease in conductivity. The relationship between conductivity and the diffusion coefficient of protons can be expressed by the Nemst-Einstein equation ... [Pg.202]

Figure 5.30. Schematic of the catalyst layer geometry and its composition, exhibiting the different functional parts, a A sketch of the layer, used to construct a continuous model, b A one-dimensional transmission-line equivalent circuit where the elementary unit with protonic resistivity Rp, the charge transfer resistivity Rch and the double-layer capacitance Cj are highlighted [34], (Reprinted from Journal of Electroanalytical Chemistry, 475, Eikerling M, Komyshev AA. Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, 107-23, 1999, with permission from Elsevier.)... Figure 5.30. Schematic of the catalyst layer geometry and its composition, exhibiting the different functional parts, a A sketch of the layer, used to construct a continuous model, b A one-dimensional transmission-line equivalent circuit where the elementary unit with protonic resistivity Rp, the charge transfer resistivity Rch and the double-layer capacitance Cj are highlighted [34], (Reprinted from Journal of Electroanalytical Chemistry, 475, Eikerling M, Komyshev AA. Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, 107-23, 1999, with permission from Elsevier.)...

See other pages where Transference polymer electrolytes is mentioned: [Pg.156]    [Pg.426]    [Pg.449]    [Pg.449]    [Pg.511]    [Pg.513]    [Pg.518]    [Pg.653]    [Pg.657]    [Pg.93]    [Pg.193]    [Pg.210]    [Pg.342]    [Pg.399]    [Pg.3]    [Pg.156]    [Pg.158]    [Pg.237]    [Pg.124]    [Pg.443]    [Pg.513]    [Pg.528]    [Pg.279]    [Pg.281]    [Pg.343]    [Pg.250]    [Pg.186]    [Pg.327]    [Pg.345]    [Pg.366]    [Pg.374]   
See also in sourсe #XX -- [ Pg.510 ]




SEARCH



Organoboron polymer electrolytes lithium transference number

Polymer electrolyte fuel cells heat transfer

Polymer electrolyte membranes heat transfer

© 2024 chempedia.info