Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tocopherols reactions

Tocotrienols differ from tocopherols by the presence of three isolated double bonds in the branched alkyl side chain. Oxidation of tocopherol leads to ring opening and the formation of tocoquinones that show an intense red color. This species is a significant contributor to color quaUty problems in oils that have been abused. Tocopherols function as natural antioxidants (qv). An important factor in their activity is their slow reaction rate with oxygen relative to combination with other free radicals (11). [Pg.124]

X5lenol is an important starting material for insecticides, xylenol—formaldehyde resins, disinfectants, wood preservatives, and for synthesis of a-tocopherol (vitamin E) (258) and i7/-a-tocopherol acetate (USP 34-50/kg, October 1994). The Bayer insecticide Methiocarb is manufactured by reaction of 3,5-x5lenol with methylsulfenyl chloride to yield 4-methylmercapto-3,5-xylenol, followed by reaction with methyl isocyanate (257). Disinfectants and preservatives are produced by chlorination to 4-chloro- and 2,4-dich1oro-3,5-dimethylpheno1 (251). [Pg.496]

Although all four tocopherols have been synthesized as their all-rac forms, the commercially significant form of tocopherol is i7//-n7i a-tocopheryl acetate. The commercial processes ia use are based on the work reported by several groups ia 1938 (15—17). These processes utilize a Friedel-Crafts-type condensation of 2,3,5-trimethylhydroquinone with either phytol (16), a phytyl haUde (7,16,17), or phytadiene (7). The principal synthesis (Fig. 3) ia current commercial use iavolves condensation of 2,3,5-trimethylhydroquiQone (13) with synthetic isophytol (14) ia an iaert solvent, such as benzene or hexane, with an acid catalyst, such as ziac chloride, boron trifluoride, or orthoboric acid/oxaUc acid (7,8,18) to give the all-rac-acetate ester (15b) by reaction with acetic anhydride. Purification of tocopheryl acetate is readily accompHshed by high vacuum molecular distillation and rectification (<1 mm Hg) to achieve the required USP standard. [Pg.146]

The all-rac forms of P-, y-, and 5-tocopherols can be synthesized using the same condensation reaction as used for i7//-n7iC-a-tocopherol. To synthesize i7//-n7iC-P-tocopherol, 2,5-dimethylhydroquinone instead of trimethyUiydroquinone is condensed with isophytol. For all-rac- - and 5-tocopherol, 2,3-dimethylhydroqiiinone and methyUiydroquinone are used, respectively. [Pg.147]

The reactions are carried out under first-order conditions, i.e., the stoichiometric concentration of the antioxidant, a-tocopherol, is in large excess over that of 16-ArN, such that the concentration of a-tocopherol does not change significantly throughout the time course of the reaction. The emulsion employed was prepared by mixing the non-ionic emulsifier Brij 30, octane and HCl (3 mM, pH = 2.5). The resulting emulsion is opaque, thus values were obtained electrochemically by employing Linear Sweep Voltammetry (LSV). [Pg.139]

Vitamin E actually consists of a family of compounds, the most active of which is a-tocopherol. The mechanism of the vitamin s action is not completely certain, but it seems likely that it might undergo hydrogen atom transfer reactions with free radicals to give a stable radical (see also Chapter 17, Problem 7). [Pg.221]

The carbanions of 1-alkenyl sulphoxides 400 also react with carbonyl compounds to give the corresponding condensation products384 (equation 237). Solladie and Moine have used this type of reaction in their enantiospecific synthesis of the chroman ring of a-tocopherol 401. Addition of the lithio reagent 402 to the aldehyde 403 affords the allylic alcohol 404 in 75% yield as a sole diastereoisomer481 (equation 238). [Pg.325]

Demailly and coworkers195 found that the asymmetric induction increased markedly when optically active methyl pyridyl sulfoxide was treated with an aldehyde. They also synthesized (S)-chroman-2-carboxylaldehyde 152, which is the cyclic ring part of a-tocopherol, by aldol-type condensation of the optically active lithium salt of a,/3-unsaturated sulfoxide. Although the diastereomeric ratio of allylic alcohol 151 formed from lithium salt 149 and 150 was not determined, the reaction of 149 with salicylaldehyde gave the diastereomeric alcohol in a ratio of 28 72196. [Pg.616]

The strong Bronstedt acid nature of some hexacoordinated phosphorus derivatives, [7",H ] (Et20)4 in particular, was recently used within the context of an industrial application [36]. The conjugated acid of tris(oxalato)phosphate anion 7 was found to effectively catalyze the ring-forming reaction of trimethyl-hydroquinone 63 with isophytol 64 to give (all rac)-a-tocopherol 65 (ethylene-carbonate/heptane 1 1,100 °C, 90%, Scheme 19). This process is particularly... [Pg.28]

As metal ions catalyze peiroxidation reactions, glass-distilled water should be used and chelating agents can be added to the medium. (5) The dispersions should not be exposed to y irradiation. (6) Antioxidant can be added to the system. a-Tocopherol, buty-lated hydroxytoluene, butyl hydroxyanisole, and ascorbic acid have been proposed as antioxidants. [Pg.280]

Figure 45-6. Interaction and synergism between antioxidant systems operating in the lipid phase (membranes) of the cell and the aqueous phase (cytosol). (R-,free radical PUFA-00-, peroxyl free radical of polyunsaturated fatty acid in membrane phospholipid PUFA-OOH, hydroperoxy polyunsaturated fatty acid in membrane phospholipid released as hydroperoxy free fatty acid into cytosol by the action of phospholipase Aj PUFA-OH, hydroxy polyunsaturated fatty acid TocOH, vitamin E (a-tocopherol) TocO, free radical of a-tocopherol Se, selenium GSH, reduced glutathione GS-SG, oxidized glutathione, which is returned to the reduced state after reaction with NADPH catalyzed by glutathione reductase PUFA-H, polyunsaturated fatty acid.)... Figure 45-6. Interaction and synergism between antioxidant systems operating in the lipid phase (membranes) of the cell and the aqueous phase (cytosol). (R-,free radical PUFA-00-, peroxyl free radical of polyunsaturated fatty acid in membrane phospholipid PUFA-OOH, hydroperoxy polyunsaturated fatty acid in membrane phospholipid released as hydroperoxy free fatty acid into cytosol by the action of phospholipase Aj PUFA-OH, hydroxy polyunsaturated fatty acid TocOH, vitamin E (a-tocopherol) TocO, free radical of a-tocopherol Se, selenium GSH, reduced glutathione GS-SG, oxidized glutathione, which is returned to the reduced state after reaction with NADPH catalyzed by glutathione reductase PUFA-H, polyunsaturated fatty acid.)...
The reaction of eq. 16.9 will regenerate the antioxidant Arj-OH at the expense of the antioxidant At2-OH. Despite the fact that such regeneration reactions are not simple electron transfer reactions, the rate of reactions like that of eq. 16.9 has been correlated with the E values for the respective Ar-0. Thermodynamic and kinetic effects have not been clearly separated for such hierarchies, but for a number of flavonoids the following pecking order was established in dimethyl formamid (DMF) by a combination of electrolysis for generating the a-tocopherol and the flavonoid phenoxyl radicals and electron spin resonance (ESR) spectroscopy for detection of these radicals (Jorgensen et al, 1999) ... [Pg.324]

There has been some evidence of a higher antioxidant effect when both flavonoids and a-tocopherol are present in systems like LDL, low-density lipoproteins (Jia et al., 1998 Zhu et al, 1999). LDL will incorporate a-tocopherol, while flavonoids will be present on the outside in the aqueous surroundings. A similar distribution is to be expected for oil-in-water emulsion type foods. In the aqueous environment, the rate of the inhibition reaction for the flavonoid is low due to hydrogen bonding and the flavonoid will not behave as a chain-breaking antioxidant. Likewise, in beer, none of the polyphenols present in barley showed any protective effect on radical processes involved in beer staling, which is an oxidative process (Andersen et al, 2000). The polyphenols have, however, been found to act synergistically... [Pg.325]

Fig. 16.5 Synergistic regeneration of a-tocopherol by quercetin at a lipid-water interphase. a-tocopherol is reacting with a lipid peroxyl radical in a chain-breaking reaction. According to the standard reduction potential, the phenoxyl radical of quercetin can further be regenerated by ascorbate. Fig. 16.5 Synergistic regeneration of a-tocopherol by quercetin at a lipid-water interphase. a-tocopherol is reacting with a lipid peroxyl radical in a chain-breaking reaction. According to the standard reduction potential, the phenoxyl radical of quercetin can further be regenerated by ascorbate.
N-Nitrosamine inhibitors Ascorbic acid and its derivatives, andDC-tocopherol have been widely studied as inhibitors of the N-nitrosation reactions in bacon (33,48-51). The effect of sodium ascorbate on NPYR formation is variable, complete inhibition is not achieved, and although results indicate lower levels of NPYR in ascorbate-containing bacon, there are examples of increases (52). Recently, it has been concluded (29) that the essential but probably not the only requirement for a potential anti-N-nitrosamine agent in bacon are its (a) ability to trap NO radicals, (b) lipophilicity, (c) non-steam volatility and (d) heat stability up to 174 C (maximum frying temperature). These appear important requirements since the precursors of NPYR have been associated with bacon adipose tissue (15). Consequently, ascorbyl paImitate has been found to be more effective than sodium ascorbate in reducing N-nitrosamine formation (33), while long chain acetals of ascorbic acid, when used at the 500 and lOOO mg/kg levels have been reported to be capable of reducing the formation of N-nitrosamines in the cooked-out fat by 92 and 97%, respectively (49). [Pg.169]

Addition of such a-lithiosulfinyl carbanions to aldehydes could proceed with asymmetric induction at the newly formed carbinol functionality. One study of this process, including variation of solvent, reaction temperature, base used for deprotonation, structure of aldehyde, and various metal salts additives (e.g., MgBrj, AlMej, ZnClj, Cul), has shown only about 20-25% asymmetric induction (equation 22) . Another study, however, has been much more successful Solladie and Moine obtain the highly diastereocontrolled aldol-type condensation as shown in equation 23, in which dias-tereomer 24 is the only observed product, isolated in 75% yield This intermediate is then transformed stereospecifically via a sulfoxide-assisted intramolecular 8, 2 process into formylchromene 25, which is a valuable chiron precursor to enantiomerically pure a-Tocopherol (Vitamin E, 26). [Pg.833]

Oxidation of the fatty acids in an LDL particle shares many of the characteristics associated with lipid peroxidation in other biological or chemical systems. Once initiated peroxyl radicals are formed and this results in the oxidation of a-tocopherol to give the a-tocopheroyl radical (Kalyanaraman etal., 1990). This can be demonstrated by e.s.r. techniques that allow the direct observation of stable radicals such as the a-tocopheroyl radical. After the a-tocopheryl radical is consumed, lipid-derived peroxyl radicals can be detected after reaction with spin traps (Kalyanaraman etal., 1990, 1991). [Pg.30]


See other pages where Tocopherols reactions is mentioned: [Pg.50]    [Pg.64]    [Pg.50]    [Pg.64]    [Pg.124]    [Pg.44]    [Pg.22]    [Pg.148]    [Pg.260]    [Pg.437]    [Pg.354]    [Pg.352]    [Pg.1295]    [Pg.1296]    [Pg.833]    [Pg.91]    [Pg.119]    [Pg.486]    [Pg.30]    [Pg.309]    [Pg.321]    [Pg.326]    [Pg.326]    [Pg.193]    [Pg.14]    [Pg.26]    [Pg.28]    [Pg.28]    [Pg.28]    [Pg.28]    [Pg.29]    [Pg.30]    [Pg.31]    [Pg.33]   


SEARCH



Reaction of Tocopherol with Peroxynitrite

Reactions of Tocopherols

Tocopherol color reactions

Tocopherol reaction product

Tocopherol reaction with peroxy radical

© 2024 chempedia.info