Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium complexes olefin epoxidation

Following the success with the titanium-mediated asymmetric epoxidation reactions of allylic alcohols, work was intensified to seek a similar general method that does not rely on allylic alcohols for substrate recognition. A particularly interesting challenge was the development of catalysts for enantioselective oxidation of unfunctionalized olefins. These alkenes cannot form conformationally restricted chelate complexes, and consequently the differentiation of the enan-tiotropic sides of the substrate is considerably more difficult. [Pg.237]

Olefin epoxidation is an important industrial domain. The general approach of SOMC in this large area was to understand better the elementary steps of this reaction catalyzed by silica-supported titanium complexes, to identify precisely reaction intermediates and to explain catalyst deachvahon and titanium lixiviation that take place in the industrial Shell SMPO (styrene monomer propylene oxide) process [73]. (=SiO) Ti(OCap)4 (OCap=OR, OSiRs, OR R = hydrocarbyl) supported on MCM-41 have been evaluated as catalysts for 1-octene epoxidation by tert-butyl hydroperoxide (TBHP). Initial activity, selechvity and chemical evolution have been followed. In all cases the major product is 1,2-epoxyoctane, the diol corresponding to hydrolysis never being detected. [Pg.113]

The catalytic oxidation of hydrocarbons with peroxides, especially the epoxidation of olefins, in liquid phase by titanium catalysts is one of the most actively investigated reactions (60). The active species for this epoxidation reaction is usually assumed to be titanium peroxo moieties, derived from four-coordinate titanium and peroxides. However, the isolation of the active intermediate remains a challenge owing to the inherent instability of such species. We have been able to synthesize and stabilize the related cubic p-oxo-silicon-titanium complex (35) by reacting a bulky... [Pg.43]

For the titanium catalyzed epoxidation, only 1 mol% of catalyst and 1.05 equiv. of H2O2 are required to obtain high yields and selectivities. Not only activated olefins gave excellent results, but also for simple styrene a 93% ee can be achieved by using this chiral titanium complex." It was speculated that this peroxotitanium species is activated by an intramolecular hydrogen bond with the amine proton (Scheme 19). [Pg.208]

M. Fujiwara, H. Wessel, H. Park, H. W. Roesky, Formation of titanium tert-butylperoxo intermediate from cubic silicon-titanium complex with tert-butyl hydroperoxide and its reactivity for olefin epoxidation. Tetrahedron 58 (2002) 239. [Pg.92]

Heferogeneous olefin epoxidation over solid titania-silica catalysts has been the subject of numerous publications in the open literature. The general picture that emerges is that isolated titanium (IV) species on a silica surface or in a zeolife mafrix are responsible for the high epoxidation activity [2]. This picture is supported by model catalyst work on titanium silasesquioxane complexes [3,4] that form active homogeneous epoxidation catalysts [5] and by various successful atfempfs fo prepare well-defined, site-isolated titanium complexes by grafting molecular precursors on mesoporous silica [6-9]. These site-isolated titanium complexes have been shown to possess catalytic activity in olefin epoxidation. [Pg.358]

Zrrconium(IV) and hafnium(IV) complexes have also been employed as catalysts for the epoxidation of olefins. The general trend is that with TBHP as oxidant, lower yields of the epoxides are obtained compared to titanium(IV) catalyst and therefore these catalysts will not be discussed iu detail. For example, zirconium(IV) alkoxide catalyzes the epoxidation of cyclohexene with TBHP yielding less than 10% of cyclohexene oxide but 60% of (fert-butylperoxo)cyclohexene °. The zirconium and hafnium alkoxides iu combiuatiou with dicyclohexyltartramide and TBHP have been reported by Yamaguchi and coworkers to catalyze the asymmetric epoxidation of homoallylic alcohols . The most active one was the zirconium catalyst (equation 43), giving the corresponding epoxides in yields of 4-38% and enantiomeric excesses of <5-77%. This catalyst showed the same sense of asymmetric induction as titanium. Also, polymer-attached zirconocene and hafnocene chlorides (polymer-Cp2MCl2, polymer-CpMCls M = Zr, Hf) have been developed and investigated for their catalytic activity in the epoxidation of cyclohexene with TBHP as oxidant, which turned out to be lower than that of the immobilized titanocene chlorides . ... [Pg.419]

Optically active diisopinocamphenylborane can be used to resolve racemic olefins. The reagent adds to one enantiomer, and the other is unchanged. Optical purities on the order of 37-65% are possible. Chiral ally lie alcohols can be resolved with chiral epoxidizing agents derived from tartrate complexes of titanium. One enantiomer is epoxidized and the other is not. Thus, die two alcohol enantiomers can be separated, one as the unsaturated alcohol and one as the epoxy alcohol. Use of die other tartrate isomer reverses die stereoselectivity. Selectivities on die order of >100 are possible with this method. As in any kinetic resolution, however, only one enantiomer can be recovered. The other is converted to a different chiral product. [Pg.143]

Within limits, an increase in the steric bulk at the olefin terminus of allylic alcohols of the type R1 CH(OH)CH=CHR2 causes an increase in the rate of epoxidation of the more-reactive enantiomer, and a decrease in the rate for the less-reactive enantiomer, resulting in enhanced kinetic resolution334. However, complexes of diisopropyl tartrate and titanium tetra-terf-butoxide catalyse the kinetic resolution of racemic secondary allylic alcohols with low efficiency335. Double kinetic resolution techniques can show significant advantages over the simple Sharpless epoxidation techniques336. [Pg.1180]

This cubic silicon-titanium g-oxo complex was also shown to be a model system for insoluble titanosilicates and related catalysts which have been used for epoxidation reactions of olefins. The cubic silicon-titanium g-oxo complex, when immobilized on a silica matrix by dissolving it in tetraethoxysilane and further treatment with acetic anhydride followed by heating up to 60 °C for 20 h, resulted in the formation of a Si02—Ti02 mixed oxide (63). The resulting solid was separated by filtration, and the filtrate formed a gel in about 1 week. This gel showed an enhanced catalytic activity (epoxidation yield of cyclohexene was 72%) as a solid catalysf for epoxidation of cyclohexene in the presence of TBHP in the liquid phase. [Pg.44]

In this context it is worth noting that neither the titanium(IV) tartrate catalyst nor other metal catalyst-alkyl hydroperoxide reagents are effective for the asymmetric epoxidation of unfunctionalized olefins. The only system that affords high enantioselectivities with unfunctionalized olefins is the manganese(III) chiral Schiff s base complex/NaOCl combination developed by Jacobsen [42]. There is still a definite need, therefore, for the development of an efficient chiral catalyst for asymmetric epoxidation of unfunctionalized olefins with alkyl hydroperoxides or hydrogen peroxide. [Pg.421]

H. J. Ledon, F. Varescon, Role of peroxo vs. alkylperoxo titanium porphyrin complexes in the epoxidation of olefins, Inorg. Client. 23 (1984) 2735. [Pg.90]


See other pages where Titanium complexes olefin epoxidation is mentioned: [Pg.76]    [Pg.30]    [Pg.49]    [Pg.345]    [Pg.148]    [Pg.44]    [Pg.1190]    [Pg.276]    [Pg.141]    [Pg.716]    [Pg.66]    [Pg.114]    [Pg.295]    [Pg.188]    [Pg.460]    [Pg.391]    [Pg.417]    [Pg.419]    [Pg.391]    [Pg.417]    [Pg.419]    [Pg.419]    [Pg.48]    [Pg.246]    [Pg.199]    [Pg.765]    [Pg.59]    [Pg.408]    [Pg.378]    [Pg.656]    [Pg.661]    [Pg.120]    [Pg.164]    [Pg.359]    [Pg.63]    [Pg.68]    [Pg.596]   


SEARCH



Epoxides complex

Olefin complexation

Olefin complexes

Olefin complexes epoxidations

Olefines, complexes

Olefinic epoxides

Olefins epoxides

Olefins, epoxidation

Titanium complexe

Titanium complexes

Titanium complexes epoxidation

© 2024 chempedia.info