Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time resolved optical spectra

An interesting feature of polarized IR spectroscopy is that rapid measurements can be performed while preserving molecular information (in contrast with birefringence) and without the need for a synchrotron source (X-ray diffraction). Time-resolved IRLD studies are almost exclusively realized in transmission because of its compatibility with various types of tensile testing devices. In the simplest implementation, p- and s-polarized spectra are sequentially acquired while the sample is deformed and/or relaxing. The time resolution is generally limited to several seconds per spectrum by the acquisition time of two spectra and by the speed at which the polarizer can be rotated. Siesler et al. have used such a rheo-optical technique to study the dynamics of multiple polymers and copolymers [40]. [Pg.312]

This mechanism leads to a highly spin-polarized triplet state with a characteristic intensity pattern in the EPR spectrum, which is observed by time-resolved techniques (either transient or pulse EPR). The zero field splitting (ZFS) of the triplet state, which dominates the EPR spectrum, is an important additional spectroscopic probe. It can also be determined by optical detection of magnetic resonance (ODMR), for a review of the techniques involved and applications see reference 15. These methods also yield information about dynamical aspects related to the formation, selective population and decay of the triplet states. The application of EPR and related techniques to triplet states in photosynthesis have been reviewed by several authors in the past15 22-100 102. The field was also thoroughly reviewed by Mobius103 and Weber45 in this series. [Pg.182]

As an essential part of a mass spectrometer, the ion separation system has the task of separating the fast-flying ions (with different masses m and charges z (with z = n-e) formed in an ion source and extracted from this source using an ion optic system) with respect to their different mass-to-charge (m/z) ratios. The separated ion beams are than supplied to the ion detection system for spatial or time resolved ion detection and registration. The mass spectrum is then the 2D representation of ion intensity as a function of the m/z ratio. [Pg.77]

Fig. 2. Doppler-free spectra of the 15 — 2S two-photon transition (F = 1 —> F = 1) in atomic hydrogen, a) Spectra for three different nozzle temperatures and no delay time, b) Time resolved spectrum (nozzle temperature 6.5 K). This plot gives the 2S count rate as a function of the absolute optical frequency for different delay times. The inset shows the spectra with longer delay times on a magnified scale... Fig. 2. Doppler-free spectra of the 15 — 2S two-photon transition (F = 1 —> F = 1) in atomic hydrogen, a) Spectra for three different nozzle temperatures and no delay time, b) Time resolved spectrum (nozzle temperature 6.5 K). This plot gives the 2S count rate as a function of the absolute optical frequency for different delay times. The inset shows the spectra with longer delay times on a magnified scale...
Time-resolved photoluminescence was also used to show that the spatial separation of the electron and hole wavefunctions due to the piezoelectric fields in GalnN/GaN QWs leads to a dramatic reduction in oscillator strength, particularly for thick quantum wells [6]. Due to the reduced oscillator strength for the lowest energy state, the optical absorption spectrum of the quantum wells is expected to be dominated by highly excited states close to the strained bulk bandgap. [Pg.521]

Fig. 1.18. Spectrally resolved pump-probe spectrum of pristine MDMO-PPV compared to highly fullerene-loaded MDMO-PPV/PCBM composites at various delay times, (a) Absorption spectrum of a pure MDMO-PPV film (solid line) and AT/T spectrum at 200 fs pump-probe delay (dashed line), (b) AT/T spectra of the MDMO-PPV/PCBM blend (1 3 wt. ratio) at various time delays following resonant photoexcitation by a sub-10-fs optical pulse. The CW PA of the blend ( ) was measured at 80 K and 10-5 mbar. Excitation was provided by the 488 nm line of an argon ion laser, chopped at 273 Hz... Fig. 1.18. Spectrally resolved pump-probe spectrum of pristine MDMO-PPV compared to highly fullerene-loaded MDMO-PPV/PCBM composites at various delay times, (a) Absorption spectrum of a pure MDMO-PPV film (solid line) and AT/T spectrum at 200 fs pump-probe delay (dashed line), (b) AT/T spectra of the MDMO-PPV/PCBM blend (1 3 wt. ratio) at various time delays following resonant photoexcitation by a sub-10-fs optical pulse. The CW PA of the blend ( ) was measured at 80 K and 10-5 mbar. Excitation was provided by the 488 nm line of an argon ion laser, chopped at 273 Hz...
In solid-state studies, ESR spectroscopy is the best detection method for studying radical intermediates in radiolysis. It is, however, difficult to apply to liquid-phase studies, and generally, optical methods are favoured. In solid-state work, radicals are trapped (matrix-isolated) and can be studied by any spectroscopic technique at leisure. However, for liquid-phase studies, time-resolved methods are often necessary because the intermediates are usually very short lived. In the technique of pulse radiolysis, short pulses of radiation, followed by pulses of light which explore the UV spectrum, are used. The spectra help to identify the species, but also their kinetic behaviour can be accurately monitored over very short time-scales (from picoseconds to milliseconds). This technique is discussed in Section 3.3. [Pg.23]


See other pages where Time resolved optical spectra is mentioned: [Pg.366]    [Pg.160]    [Pg.689]    [Pg.261]    [Pg.96]    [Pg.3787]    [Pg.112]    [Pg.3786]    [Pg.133]    [Pg.1248]    [Pg.50]    [Pg.141]    [Pg.230]    [Pg.209]    [Pg.71]    [Pg.134]    [Pg.239]    [Pg.132]    [Pg.589]    [Pg.282]    [Pg.71]    [Pg.50]    [Pg.227]    [Pg.32]    [Pg.41]    [Pg.21]    [Pg.255]    [Pg.390]    [Pg.393]    [Pg.879]    [Pg.361]    [Pg.405]    [Pg.483]    [Pg.348]    [Pg.23]    [Pg.5]    [Pg.25]    [Pg.141]    [Pg.50]    [Pg.19]    [Pg.227]    [Pg.240]    [Pg.230]    [Pg.47]    [Pg.563]    [Pg.370]    [Pg.314]   
See also in sourсe #XX -- [ Pg.376 ]




SEARCH



Optical spectra

Time spectrum

© 2024 chempedia.info