Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Threonine, chromatographic separation

Glycosaminoglycans are solubilized from stromal or other tissues by extracting the source tissue with dilute acid or alkali. Hyaluronan is electrostatically bound to specific proteins called hyaladherins, which possess a structural domain of -100 amino acids termed a link module. Other glycosaminoglycans are O-linked to serine and threonine residues of polypeptides and these bonds hydrolyze before the rest of the polysaccharide. The protein moiety precipitates when trichloroacetic acid or ammonium sulfate is added to the cooled mixture. The composition of the GAGs (including hyaluronan) was identified by chromatographic separation of the purified polysaccharides, followed by their hydrolysis in boiling 1.0 M HC1 for 2 1 h and identification of the individual monosaccharide components. [Pg.90]

The circulins—As early as 1949, Peterson and Reineke characterized circulin as its sulphate. Total hydrolysis yielded D-leucine, L-threonine and L-K,y-diaminobutyric acid together with an optically active isomer of pelargonic acid. The existence of two components, found by Peterson and Reineke was later confirmed by the chromatographic separation of crude circulin into two major components, named circulin A and circulin B. In addition there was evidence for at least three other ninhydrin-positive, biologically active entities. In the hydrolysate of circulin A, L-isoleucine was found besides the amino acids previously reported . Quantitative amino acid analysis showed circulin A and B to be composed of L-a,y-diamino-butyric acid, L-threonine, D-leucine, L-isoleucine and ( + )-6-methyloctanoic acid in the molar ratio 6 2 1 1 1. After partial acid hydrolysis, fractionation and structure determination of the resulting peptides, circulin A and circulin B were formulated as cyclodecapeptides . Very recently, however, Japanese workers have revised the structure of circulin A. According to them, circulin A differs from colistin A only by a replacement of L-leucine in the latter by L-isoleucine Figure 1.7). [Pg.28]

Sulfosalicylic acid has most commonly been used to precipitate proteins prior to ion-exchange amino acid analysis (11). In this mode, SSA allows for a very simple sample preparation that requires only centrifugation of the precipitated sample and then direct injection of the resulting supernatant solution. The supernatant solution is already at an appropriate pH for direct injection. Also, the SSA does not interfere chromatographically since it elutes essentially in the void volume of the column. It has been noted that, if an excessive amount of SSA is employed, resolution of the serine/threonine critical pair can suffer (12). The use of SSA prior to reversed-phase HPLC can be more problematic, since its presence can interfere with precolumn deriva-tization. For example, Cohen and Strydom (13) recommend the separation of the amino acids from the SSA solution on a cation-exchange resin prior to derivatization with phenylisothiocya-nate (PITC). [Pg.60]

Fig. 11.2.11. Isocratic separation of PTH-amino adds. Chromatographic conditions column, Ultrasphere ODS (250 X 4.6 mm I.D.) mobile phase, 0.01 M sodium acetate (pH 4.9)-acetonitrile (62.2 37.8) flow rate, 1 ml/min temperature, ambient. Peak identity corresponding to the single letter code for amino acids D, aspartic acid E, glutamic acid N, asparagine Q, glutamine T, threonine G, glycine A, alanine Y, tyrosine M, methionine V, valine P, proline W, tryptophan F, phenylalanine K, lysine I, isoleucine L, leucine S, serine. Reproduced from Noyes (1983), with... Fig. 11.2.11. Isocratic separation of PTH-amino adds. Chromatographic conditions column, Ultrasphere ODS (250 X 4.6 mm I.D.) mobile phase, 0.01 M sodium acetate (pH 4.9)-acetonitrile (62.2 37.8) flow rate, 1 ml/min temperature, ambient. Peak identity corresponding to the single letter code for amino acids D, aspartic acid E, glutamic acid N, asparagine Q, glutamine T, threonine G, glycine A, alanine Y, tyrosine M, methionine V, valine P, proline W, tryptophan F, phenylalanine K, lysine I, isoleucine L, leucine S, serine. Reproduced from Noyes (1983), with...
Fig. 11.2.12. Normal phase separation of amino acids. Chromatographic conditions column, Zorbax NH2 (250 x 4.6 mm I.D.) mobile phase, 10 mM potassium phosphate, pH 4.3 (A), acetonitrile-water 50 7 (v/v) (B) flow rate, 2 ml/min temperature, 35 °C. Peaks 1, phenylalanine 2, leucine 3, isoleucine 4, methionine 5, tyrosine 6, valine 7, proline 8, alanine 9, hypro 10, threonine 11, glycine 12, serine 13, histidine 14, cysteine 15, arginine 16, lysine 17, hydroxylysine 18, glutamic acid 19, aspartic acid. Reproduced from Smolensk et al. (1983), with permission. Fig. 11.2.12. Normal phase separation of amino acids. Chromatographic conditions column, Zorbax NH2 (250 x 4.6 mm I.D.) mobile phase, 10 mM potassium phosphate, pH 4.3 (A), acetonitrile-water 50 7 (v/v) (B) flow rate, 2 ml/min temperature, 35 °C. Peaks 1, phenylalanine 2, leucine 3, isoleucine 4, methionine 5, tyrosine 6, valine 7, proline 8, alanine 9, hypro 10, threonine 11, glycine 12, serine 13, histidine 14, cysteine 15, arginine 16, lysine 17, hydroxylysine 18, glutamic acid 19, aspartic acid. Reproduced from Smolensk et al. (1983), with permission.
Fig. 2. The elution pattern of a standard mixture of OPA-derivatized primary amines, separated on a 5 (Jim Nucleosil C-18 column (200 X 4.6 mm id). The flow-rate was 1 mL/min employing the indicated gradient of metlianol and Na phosphate buffer (50 mA4, pH 5.25). Each peak represents 39 pmol except for those indicated below. 1, glutathione 2, cysteic acid 3, O-phosphoserine (19.5 pmol) 4, cysteine sulfinic acid 5, aspartic acid 6, asparagine (19.5 pmol) 7, glutamic acid 8, histidine 9, serine 10, glutamine 11, 3-methyl-histidine 12, a-aminoadipic acid (9.8 pmol) 13, citrulline (9.8 pmol) 14, carnosine 15, threonine,glycine 16, O-phosphoethanolamine 17, taurine (19.5 pmol) 18, p-alanine (19.5 pmol) 19, tyrosine 20, alanine 21, a-aminoisobutyric acid 22, aminoisobutyric acid 23, y-amino-ii-butyric acid 24, p-amino-u-butyric acid 25, a-amino-butyric acid 26, histamine 27, cystathione (19.5 pmol) 28, methionine 29, valine 30, phenylalanine 31, isoleucine 32, leucine 33, 5-hydroxytryptamine (5-H i ) 34, lysine. The chromatographic system consisted of a Varian LC 5000 chromatograph and a Schoeffel FS 970 fluorimeter. Fig. 2. The elution pattern of a standard mixture of OPA-derivatized primary amines, separated on a 5 (Jim Nucleosil C-18 column (200 X 4.6 mm id). The flow-rate was 1 mL/min employing the indicated gradient of metlianol and Na phosphate buffer (50 mA4, pH 5.25). Each peak represents 39 pmol except for those indicated below. 1, glutathione 2, cysteic acid 3, O-phosphoserine (19.5 pmol) 4, cysteine sulfinic acid 5, aspartic acid 6, asparagine (19.5 pmol) 7, glutamic acid 8, histidine 9, serine 10, glutamine 11, 3-methyl-histidine 12, a-aminoadipic acid (9.8 pmol) 13, citrulline (9.8 pmol) 14, carnosine 15, threonine,glycine 16, O-phosphoethanolamine 17, taurine (19.5 pmol) 18, p-alanine (19.5 pmol) 19, tyrosine 20, alanine 21, a-aminoisobutyric acid 22, aminoisobutyric acid 23, y-amino-ii-butyric acid 24, p-amino-u-butyric acid 25, a-amino-butyric acid 26, histamine 27, cystathione (19.5 pmol) 28, methionine 29, valine 30, phenylalanine 31, isoleucine 32, leucine 33, 5-hydroxytryptamine (5-H i ) 34, lysine. The chromatographic system consisted of a Varian LC 5000 chromatograph and a Schoeffel FS 970 fluorimeter.

See other pages where Threonine, chromatographic separation is mentioned: [Pg.365]    [Pg.228]    [Pg.698]    [Pg.836]    [Pg.70]    [Pg.257]    [Pg.473]    [Pg.228]    [Pg.287]    [Pg.229]    [Pg.94]    [Pg.3560]    [Pg.566]    [Pg.837]    [Pg.585]    [Pg.1079]   


SEARCH



Threonin

Threoninal

Threonine

© 2024 chempedia.info