Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thorium temperature

The metal is a source of nuclear power. There is probably more energy available for use from thorium in the minerals of the earth s crust than from both uranium and fossil fuels. Any sizable demand from thorium as a nuclear fuel is still several years in the future. Work has been done in developing thorium cycle converter-reactor systems. Several prototypes, including the HTGR (high-temperature gas-cooled reactor) and MSRE (molten salt converter reactor experiment), have operated. While the HTGR reactors are efficient, they are not expected to become important commercially for many years because of certain operating difficulties. [Pg.174]

Nuclear Applications. Use of the nitrides of uranium-235 and thorium as fuels and breeders in high temperature reactors has been proposed (see Nuclearreactors). However, the compounds most frequently used for this purpose are the oxides and carbides. Nitrides could be useful in high... [Pg.56]

In the area of superconductivity, tetravalent thorium is used to replace trivalent lanthanides in n-ty e doped superconductors, R2 Th Cu0 g, where R = Pr, Nd, or Sm, producing a higher T superconductor. Thorium also forms alloys with a wide variety of metals. In particular, thorium is used in magnesium alloys to extend the temperature range over which stmctural properties are exhibited that are useful for the aircraft industry. More detailed discussions on thorium alloys are available (8,19). [Pg.36]

Properties. Pure thorium metal is a dense, bright silvery metal having a very high melting point. The metal exists in two allotropic modifications. Thorium is a reactive, soft, and ductile metal which tarnishes slowly on exposure to air (12). Having poor mechanical properties, the metal has no direct stmctural appHcations. A survey of the physical properties of thorium is summarized in Table 1. Thorium metal is diamagnetic at room temperature, but becomes superconducting below 1.3—1.4 K. [Pg.36]

Bromine reacts with some metal oxides, eg, thorium oxide, at high temperatures in the presence of reducing agents to form bromides (18). Certain nonhydrated metal haUdes can be formed by precipitation. These include AgBr, CuBr, AuBr, HBr, PbBr2, PtBr2, and Hg2Br2 (19). [Pg.280]

With Acyl Halides, Hydrogen Halides, and Metallic Halides. Ethylene oxide reacts with acetyl chloride at slightly elevated temperatures in the presence of hydrogen chloride to give the acetate of ethylene chlorohydrin (70). Hydrogen haUdes react to form the corresponding halohydrins (71). Aqueous solutions of ethylene oxide and a metallic haUde can result in the precipitation of the metal hydroxide (72,73). The haUdes of aluminum, chromium, iron, thorium, and zinc in dilute solution react with ethylene oxide to form sols or gels of the metal oxide hydrates and ethylene halohydrin (74). [Pg.453]

Silver-containing catalysts are used exclusively in all commercial ethylene oxide units, although the catalyst composition may vary considerably (129). Nonsdver-based catalysts such as platinum, palladium, chromium, nickel, cobalt, copper ketenide, gold, thorium, and antimony have been investigated, but are only of academic interest (98,130—135). Catalysts using any of the above metals either have very poor selectivities for ethylene oxide production at the conversion levels required for commercial operation, or combust ethylene completely at useful operating temperatures. [Pg.458]

The Arbeitsgemeinschaft Versuchsreaktor (AVR) and Thorium High-Temperature Reactor (THTR-300) were both helium-cooled reactors of the pebble-bed design [29,42,43]. The major design parameters of the AVR and THTR are shown in Table 10. Construction started on the AVR in 1961 and full power operation at 15MW(e) commenced in May 1967. The core of the AVR consisted of approximately 100,000 spherical pebble type fuel elements (see Section 5). The pebble bed was surrounded by a cylindrical graphite reflector and structural carbon... [Pg.450]

Thermionic Emission - Because of. the nonzero temperature of the cathode, free electrons are continuously bouncing inside. Some of these have sufficient energy to overcome the work function of the material and can be found in the vicinity of the surface. The cathode may be heated to increase this emission. Also to enhance this effect, cathodes are usually made of, or coated with, a low work-function material such as thorium. [Pg.452]

In the chemical process industry molybdenum has found use as washers and bolts to patch glass-lined vessels used in sulphuric acid and acid environments where nascent hydrogen is produced. Molybdenum thermocouples and valves have also been used in sulphuric acid applications, and molybdenum alloys have been used as reactor linings in plant used for the production of n-butyl chloride by reactions involving hydrochloric and sulphuric acids at temperatures in excess of 170°C. Miscellaneous applications where molybdenum has been used include the liquid phase Zircex hydrochlorination process, the Van Arkel Iodide process for zirconium production and the Metal Hydrides process for the production of super-pure thorium from thorium iodide. [Pg.849]

The main sources of infrared radiation used in spectrophotometers are (1) a nichrome wire wound on a ceramic support, (2) the Nernst glower, which is a filament containing zirconium, thorium and cerium oxides held together by a binder, (3) the Globar, a bonded silicon carbide rod. These are heated electrically to temperatures within the range 1200- 2000 °C when they will glow and produce the infrared radiation approximating to that of a black body. [Pg.744]

Our information on AHf(PuF4,c) is based on high temperature reactions (600-900 K) already assessed in 1966 by Rand (21) and on extrapolation of uranium and thorium tetrafluoride data. Thus we have... [Pg.81]

Fluidized-bed CVD was developed in the late 1950s for a specific application the coating of nuclear-fuel particles for high temperature gas-cooled reactors. PI The particles are uranium-thorium carbide coated with pyrolytic carbon and silicon carbide for the purpose of containing the products of nuclear fission. The carbon is obtained from the decomposition of propane (C3H8) or propylene... [Pg.133]

Filaments are usually refractory metals such as tungsten or iridium, which can sustain high temperatures for a long time (T > 3000 K). The lifetime of filaments for electron sources can be prolonged substantially if an adsorbate can be introduced that lowers the work function on the surface so that it may be operated at lower temperature. Thorium fulfills this function by being partly ionized, donating electrons to the filament, which results in a dipole layer that reduces the work function of the tungsten. In catalysis, alkali metals are used to modify the effect of the work function of metals, as we will see later. [Pg.229]

Langmnir D, Herman JS (1980) The mobility of thorium in natural waters at low temperatures. Geochim Cosmochim Acta 44 1753-1766... [Pg.20]

Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42 547-569 Langmuir D, Herman JS (1980) The mobility of thorium in natural waters at low temperatures. Geochim Cosmochim Acta 44 1753-1766... [Pg.572]

Small amounts of thorium are used in alloys with tungsten to produce the spiral filaments of light bulbs. Higher temperature generate a brighter light. [Pg.81]


See other pages where Thorium temperature is mentioned: [Pg.396]    [Pg.175]    [Pg.107]    [Pg.347]    [Pg.224]    [Pg.15]    [Pg.192]    [Pg.57]    [Pg.312]    [Pg.26]    [Pg.36]    [Pg.37]    [Pg.37]    [Pg.39]    [Pg.40]    [Pg.41]    [Pg.453]    [Pg.515]    [Pg.2]    [Pg.390]    [Pg.86]    [Pg.252]    [Pg.36]    [Pg.39]    [Pg.83]    [Pg.92]    [Pg.263]    [Pg.387]    [Pg.455]    [Pg.155]    [Pg.122]    [Pg.221]   
See also in sourсe #XX -- [ Pg.467 , Pg.468 ]




SEARCH



High temperature thorium fueled reactor

High temperature thorium fueled reactor THTR)

Thorium high-temperature nuclear reactor

Thorium high-temperature reactor

Thorium vapor pressure, high temperature

© 2024 chempedia.info