Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thorium complex salts

Thorium compounds of anionic nitrogen-donating species such as [Th(NR2)4], where R = alkyl or sdyl, are weU-known. The nuclearity is highly dependent on the steric requirements of R. Amides are extremely reactive, readily undergoing protonation to form amines or insertion reactions with CO2, COS, CS2, and CSe2 to form carbamates. Tetravalent thorium thiocyanates have been isolated as hydrated species, eg, Th(NCS)4(H20)4 [17837-16-0] or as complex salts, eg, M4 Th(NCS)g] vvH20, where M = NH, Rb, or Cs. [Pg.38]

The simplest dicarboxylate ligand is oxalate, 020 . Thorium oxalate complexes have been used to produce high density fuel pellets, which improve nuclear fuel processes (73). The stabiUty of oxalate complexes and the relevance to waste disposal have also been studied (74). Many thorium oxalate complexes are known, ranging from the simple Th(C20 2 >5rl2 complex salts such as where n = 4, 5, or 6 and where the counterions... [Pg.39]

Complex salts of thorium fluorides have been generated by interaction of ThF with fluoride salts of aLkaU or other univalent cations under molten salt conditions. The general forms of these complexes are [ThF ] [15891 -02-8] ThFJ [1730048-0] and [ThF ] [56141-64-1], where typical countercations are LC, Na", K", Cs", NH" 4, and N2H" 3. Additional information on thorium fluorides can be found in the Hterature (81). [Pg.40]

Di(carbene)gold(I) salts, oxidation, 2, 293—294 Dicarbido clusters, with decarutheniums, 6, 1036 Dicarbollide amides, with tantalum, 5, 184 Dicarbollide thorium complexes, synthesis and characterization, 4, 224—225 Dicarbollyl ligands, in nickel complexes, 8, 185 Dicarbonyl complexes arylation with lead triacetates diastereoselectivity, 9, 389 enantioselectivity, 9, 391 mechanisms, 9, 387 reaction examples, 9, 382 indium-mediated allylation, 9, 675 with iridium, 7, 287 reductive cyclization, 10, 529 in Ru and Os half-sandwiches, 6, 508 with Zr—Hf(II), 4, 700... [Pg.94]

Complicating the development of ISEs for higher actinide ions is their inherent radioactivity. They also have chemistry tiiat often differs from that of the uranyl cation. Actinides from americium to lawrencium display solution-phase chemical features that resemble those of the trivalent lanthanides. Conversely, in certain oxidation states, the early actinides (thorium through neptunium) often mimic transition metals. Also, as mentioned above, many of the actinides can exist in a large number of oxidation states. For instance, in the case of plutonium, four oxidation states can exist simultaneously in aqueous solution. Finally, as true for the lanthanides, complex salts with hydroxide, halogens, perchlorates, sulfates, carbonates, and phosphates are well known for most of the actinides. [Pg.563]

Direct Titrations. The most convenient and simplest manner is the measured addition of a standard chelon solution to the sample solution (brought to the proper conditions of pH, buffer, etc.) until the metal ion is stoichiometrically chelated. Auxiliary complexing agents such as citrate, tartrate, or triethanolamine are added, if necessary, to prevent the precipitation of metal hydroxides or basic salts at the optimum pH for titration. Eor example, tartrate is added in the direct titration of lead. If a pH range of 9 to 10 is suitable, a buffer of ammonia and ammonium chloride is often added in relatively concentrated form, both to adjust the pH and to supply ammonia as an auxiliary complexing agent for those metal ions which form ammine complexes. A few metals, notably iron(III), bismuth, and thorium, are titrated in acid solution. [Pg.1167]

Rubidium metal alloys with the other alkaU metals, the alkaline-earth metals, antimony, bismuth, gold, and mercury. Rubidium forms double haUde salts with antimony, bismuth, cadmium, cobalt, copper, iron, lead, manganese, mercury, nickel, thorium, and 2iac. These complexes are generally water iasoluble and not hygroscopic. The soluble mbidium compounds are acetate, bromide, carbonate, chloride, chromate, fluoride, formate, hydroxide, iodide. [Pg.278]

Physical and Chemical Properties. Some of the physical and chemical properties (i.e., K°w K°<= and Henry s law constant) that are often used in the estimation of environmental fate of organic compounds are not useful or relevant for most inorganic compounds including thorium and its compounds. Relevant data concerning the physical and chemical properties, such as solubility, stability, and oxidation-reduction potential of thorium salts and complexes have been located in the existing literature. [Pg.109]

The known thorium(IV) and uranium(IV) complexes are listed in Table 15. The attempted preparation of Th(H2BPz2)4 (Pz = C3H3N2) yields the salt KTh(H2BPz2)5. Although the NMR spectrum of this salt indicates dissociation to Th(H2BPz2)4 and K(H2BPz2) in (CD3)2CO, Th(H2BPz2)4 could not be isolated. [Pg.1142]

Although the exact extentis not known accurately, hydrolysis of various salts is known to occur. Since the hydroxide is not precipitated it is assumed that the hydrolysis product is some ion on the form Th(OH)2++ orThOHJ+. The solution chemistry of thonum is made more complicated because of the hydrolytic phenomena observed and the polynuclear complex ions that are formed at low acidities and higher thorium concentrations. [Pg.1615]


See other pages where Thorium complex salts is mentioned: [Pg.1150]    [Pg.624]    [Pg.39]    [Pg.1160]    [Pg.149]    [Pg.208]    [Pg.208]    [Pg.221]    [Pg.2989]    [Pg.165]    [Pg.119]    [Pg.521]    [Pg.21]    [Pg.393]    [Pg.396]    [Pg.467]    [Pg.37]    [Pg.38]    [Pg.88]    [Pg.947]    [Pg.226]    [Pg.149]    [Pg.136]    [Pg.1150]    [Pg.1150]    [Pg.1152]    [Pg.1154]    [Pg.1157]    [Pg.1175]    [Pg.556]    [Pg.957]    [Pg.467]    [Pg.368]    [Pg.24]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Complex salts

Salt complexation

Thorium complexes

© 2024 chempedia.info