Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic properties energy

Spectrum. The IR spectrum is in Ref 17 Thermodynamic Properties. Energy of N-F bond 61.1kcal/mole (Ref 15) Qf6as -3.1440 kcal/mole (Ref 17)... [Pg.309]

A quantitative theory of rate processes has been developed on the assumption that the activated state has a characteristic enthalpy, entropy and free energy the concentration of activated molecules may thus be calculated using statistical mechanical methods. Whilst the theory gives a very plausible treatment of very many rate processes, it suffers from the difficulty of calculating the thermodynamic properties of the transition state. [Pg.402]

Two simulation methods—Monte Carlo and molecular dynamics—allow calculation of the density profile and pressure difference of Eq. III-44 across the vapor-liquid interface [64, 65]. In the former method, the initial system consists of N molecules in assumed positions. An intermolecule potential function is chosen, such as the Lennard-Jones potential, and the positions are randomly varied until the energy of the system is at a minimum. The resulting configuration is taken to be the equilibrium one. In the molecular dynamics approach, the N molecules are given initial positions and velocities and the equations of motion are solved to follow the ensuing collisions until the set shows constant time-average thermodynamic properties. Both methods are computer intensive yet widely used. [Pg.63]

What has been developed within the last 20 years is the computation of thermodynamic properties including free energy and entropy [12, 13, 14]. But the ground work for free energy perturbation was done by Valleau and Torrie in 1977 [15], for particle insertion by Widom in 1963 and 1982 [16, 17] and for umbrella sampling by Torrie and Valleau in 1974 and 1977 [18, 19]. These methods were primarily developed for use with Monte Carlo simulations continuous thermodynamic integration in MD was first described in 1986 [20]. [Pg.4]

A ll ide variety of thermodynamic properties can be calculated from compufer simulations a Comparison of experimental and calculated values for such properties is an important way in which the accuracy of the simulation and the underlying energy model can be quantified. Simulation methods also enable predictions to be made of the thermodynamic properties of V.stems for which there is no experimental data, or for which experimental data is difficult or impossible to obtain. Simulations can also provide structural information about the... [Pg.321]

The thermodynamic properties that we have considered so far, such as the internal energy, the pressure and the heat capacity are collectively known as the mechanical properties and can be routinely obtained from a Monte Carlo or molecular dynamics simulation. Other thermodynamic properties are difficult to determine accurately without resorting to special techniques. These are the so-called entropic or thermal properties the free energy, the chemical potential and the entropy itself. The difference between the mechanical emd thermal properties is that the mechanical properties are related to the derivative of the partition function whereas the thermal properties are directly related to the partition function itself. To illustrate the difference between these two classes of properties, let us consider the internal energy, U, and the Fielmholtz free energy, A. These are related to the partition function by ... [Pg.327]

One may wonder why it is important to distinguish between and keep track of these two energies and Dq, when it seems that one would do. Actually, both are important. The bond energy Dg dominates theoretical comparisons and the dissociation energy Dq, which is the ground state of the real molecule, is used in practical applications like calculating thermodynamic properties and reaction kinetics. [Pg.307]

Thermodynamic properties, such as enthalpy, energy, entropy, and the like, are related to one another. Thus, some information must be obtained from the... [Pg.313]

Enthalpy. Enthalpy is the thermodynamic property of a substance defined as the sum of its internal energy plus the quantity Pv//, where P = pressure of the substance, v = its specific volume, and J = the mechanical equivalent of heat. Enthalpy is also known as total heat and heat content. [Pg.354]

The scientific basis of extractive metallurgy is inorganic physical chemistry, mainly chemical thermodynamics and kinetics (see Thermodynamic properties). Metallurgical engineering reties on basic chemical engineering science, material and energy balances, and heat and mass transport. Metallurgical systems, however, are often complex. Scale-up from the bench to the commercial plant is more difficult than for other chemical processes. [Pg.162]

Free energy, G, is a related thermodynamic property. It is most commonly used to define the condition for equiUbrium in a processing step. It is identical to AH if the processing step occurs at Tq. [Pg.83]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

Values for the free energy and enthalpy of formation, entropy, and ideal gas heat capacity of carbon monoxide as a function of temperature are listed in Table 2 (1). Thermodynamic properties have been reported from 70—300 K at pressures from 0.1—30 MPa (1—300 atm) (8,9) and from 0.1—120 MPa (1—1200 atm) (10). [Pg.48]

In the broadest sense, thermodynamics is concerned with mathematical relationships that describe equiUbrium conditions as well as transformations of energy from one form to another. Many chemical properties and parameters of engineering significance have origins in the mathematical expressions of the first and second laws and accompanying definitions. Particularly important are those fundamental equations which connect thermodynamic state functions to real-world, measurable properties such as pressure, volume, temperature, and heat capacity (1 3) (see also Thermodynamic properties). [Pg.232]

Hea.t Ca.pa.cities. The heat capacities of real gases are functions of temperature and pressure, and this functionaHty must be known to calculate other thermodynamic properties such as internal energy and enthalpy. The heat capacity in the ideal-gas state is different for each gas. Constant pressure heat capacities, (U, for the ideal-gas state are independent of pressure and depend only on temperature. An accurate temperature correlation is often an empirical equation of the form ... [Pg.235]

Generalized charts are appHcable to a wide range of industrially important chemicals. Properties for which charts are available include all thermodynamic properties, eg, enthalpy, entropy, Gibbs energy and PVT data, compressibiUty factors, Hquid densities, fugacity coefficients, surface tensions, diffusivities, transport properties, and rate constants for chemical reactions. Charts and tables of compressibiHty factors vs reduced pressure and reduced temperature have been produced. Data is available in both tabular and graphical form (61—72). [Pg.239]

Kamlet-Taft Linear Solvation Energy Relationships. Most recent works on LSERs are based on a powerfiil predictive model, known as the Kamlet-Taft model (257), which has provided a framework for numerous studies into specific molecular thermodynamic properties of solvent—solute systems. This model is based on an equation having three conceptually expHcit terms (258). [Pg.254]

The values given in the following table for the heats and free energies of formation of inorganic compounds are derived from a) Bichowsky and Rossini, Thermochemistry of the Chemical Substances, Reinhold, New York, 1936 (h) Latimer, Oxidation States of the Elements and Their Potentials in Aqueous Solution, Prentice-Hall, New York, 1938 (c) the tables of the American Petroleum Institute Research Project 44 at the National Bureau of Standards and (d) the tables of Selected Values of Chemical Thermodynamic Properties of the National Bureau of Standards. The reader is referred to the preceding books and tables for additional details as to methods of calculation, standard states, and so on. [Pg.231]

The fundamental thermodynamic properties that arise in connection with the first and second laws of thermodyuamics are internal energy and entropy These properties, together with the two laws for which they are essential, apply to all types of systems. However, different types of systems are characterized by different sets of measurable coordinates or variables. The type of system most commonly... [Pg.514]


See other pages where Thermodynamic properties energy is mentioned: [Pg.39]    [Pg.26]    [Pg.310]    [Pg.234]    [Pg.234]    [Pg.234]    [Pg.59]    [Pg.705]    [Pg.39]    [Pg.26]    [Pg.310]    [Pg.234]    [Pg.234]    [Pg.234]    [Pg.59]    [Pg.705]    [Pg.61]    [Pg.176]    [Pg.338]    [Pg.296]    [Pg.296]    [Pg.317]    [Pg.325]    [Pg.327]    [Pg.357]    [Pg.383]    [Pg.428]    [Pg.430]    [Pg.468]    [Pg.469]    [Pg.18]    [Pg.382]    [Pg.470]    [Pg.481]    [Pg.211]    [Pg.222]    [Pg.248]    [Pg.248]    [Pg.635]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Energy properties

Energy thermodynamics

Thermodynamic Properties from Helmholtz Energy Equations of State

Thermodynamic energy

Thermodynamic properties Gibbs energy

Thermodynamic properties Helmholtz energy

Thermodynamic properties internal energy

Thermodynamic properties surface energy

Transformed Gibbs energy thermodynamic properties

© 2024 chempedia.info