Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal spots

Finally, if the thermal properties of the recording medium are known, then thermal models may be applied to convert the dissipated power within the medium into a corresponding temperature profile. The FWHM size of the thermal spot and its peak temperature for a given input optical power to the transducer are directly related to the capability of the NFT for HAMR. Because this FOM depends on the specific thermal properties of the multilayer film stack in the recording medium, and these properties are oiten not known with precision, this FOM is of limited usefulness. [Pg.64]

This paper deals with the control of weld depth penetration for cylinders in gold-nickel alloy and tantalum. After introducing the experimental set-up and the samples description, the study and the optimization of the testing are presented for single-sided measurements either in a pulse-echo configuration or when the pump and the probe laser beams are shifted (influence of a thermal phenomenon), and for different kind of laser impact (a line or a circular spot). First, the ultrasonic system is used to detect and to size a flat bottom hole in an aluminium plate. Indeed, when the width of the hole is reduced, its shape is nearly similar to the one of a slot. Then, the optimization is accomplished for... [Pg.693]

In the absence of air, TEE disproportionates violently to give carbon and carbon tetrafluoride the same amount of energy is generated as in black powder explosions. This type of decomposition is initiated thermally and equipment hot spots must be avoided. The flammability limits of TEE are 14—43% it bums when mixed with air and forms explosive mixtures with air and oxygen. It can be stored in steel cylinders under controlled conditions inhibited with a suitable stabilizer. The oxygen content of the vapor phase should not exceed 10 ppm. Although TEE is nontoxic, it may be contaminated by highly toxic fluorocarbon compounds. [Pg.349]

Heat pipes are used to perform several important heat-transfer roles ia the chemical and closely aUied iadustries. Examples iaclude heat recovery, the isothermaliziag of processes, and spot cooling ia the mol ding of plastics. In its simplest form the heat pipe possesses the property of extremely high thermal conductance, often several hundred times that of metals. As a result, the heat pipe can produce nearly isothermal conditions making an almost ideal heat-transfer element. In another form the heat pipe can provide positive, rapid, and precise control of temperature under conditions that vary with respect to time. [Pg.511]

The capacity of any specific tank configuration, in terms of metric ton equivalents, is deterrnined by one of three parameters. (/) The solubiHty of waste salts. Precipitates can settle and cause thermal hot spots, which in turn can result in accelerated corrosion rates. Thus it is important to maintain the... [Pg.207]

Thermal printing usually involves passing materials over a full-width array of electronically controlled heaters (a thermal printhead). This marks thousands of spots simultaneously, so pages print relatively quickly. Image data to control the printhead usually come from computer systems. Black-and-white and full-color systems are both practical. Color is slower and more cosdy to purchase and use, primarily because this involves three or four successive printing operations, one for each color used. [Pg.50]

Catalyst Effectiveness. Even at steady-state, isothermal conditions, consideration must be given to the possible loss in catalyst activity resulting from gradients. The loss is usually calculated based on the effectiveness factor, which is the diffusion-limited reaction rate within catalyst pores divided by the reaction rate at catalyst surface conditions (50). The effectiveness factor E, in turn, is related to the Thiele modulus,

first-order rate constant, a the internal surface area, and the effective diffusivity. It is desirable for E to be as close as possible to its maximum value of unity. Various formulas have been developed for E, which are particularly usehil for analyzing reactors that are potentially subject to thermal instabilities, such as hot spots and temperature mnaways (1,48,51). [Pg.516]

In addition to the circuit breaker, there have been a number of other SMA appHcations for various functions in electric power generation (qv), distribution, and transmission systems. One such device is a thermal indicator that provides a signal visible from the ground of a hot junction or connector in a distribution yard. Such hot spots occur as a result of the loosening of bus bar connectors owing to cycHc temperature as the electric load varies. In addition to the use of SMA flags as a hot-spot indicators, actuators that automatically maintain the contact force in a bus bar connection have been demonstrated. Based on a BeUeviHe washer fabricated from a Cu—Al—Ni SMA trained to exhibit two-way memory, these washers, when heated by a hot joint, increase their force output and correct the condition. A 30 mm diameter washer 3 mm thick can produce a force of over 4000 N. Similar in purpose... [Pg.464]

Premature shutdown of fans/venti-lation system immediately following shutdown of heat input (prior to sufficient cooling) resulting in hot spots and flammable pockets (dryers, carbon beds, and thermal oxidizers). Possibility of subsequent ignition resulting in fire or explosion. [Pg.50]

This result means that the reactor is insensitive if the temperature profile is concave toward the reactor length axis, and the inflection point is avoided. If the AT exceeds that permitted by the previous criterion—the limit set by RT /E— an inflection of the temperature vs., tube length will occur and thermal runaway will set in. Just before runway sets in the temperature at the hot spot can be 1.4 times higher than RT /E. [Pg.204]

The copolymers have been used in the manufacture of extruded pipe, moulded fittings and for other items of chemical plant. They are, however, rarely used in Europe for this purpose because of cost and the low maximum service temperature. Processing conditions are adjusted to give a high amount of crystallinity, for example by the use of moulds at about 90°C. Heated parts of injection cylinders and extruder barrels which come into contact with the molten polymer should be made of special materials which do not cause decomposition of the polymer. Iron, steel and copper must be avoided. The danger of thermal decomposition may be reduced by streamlining the interior of the cylinder or barrel to avoid dead-spots and by careful temperature control. Steam heating is frequently employed. [Pg.468]

Point defects, static disorder, and thermally induced displacements lead to an increase of the background intensity between the spots. Depending on the correlation between the scatters, the background is either homogeneous (no correlation) or... [Pg.76]

The disadvantage of lasers with nanosecond-picosecond pulse duration for depth profiling is the predominantly thermal character of the ablation process [4.229]. For metals the irradiated spot is melted and much of the material is evaporated from the melt. The melting of the sample causes modification and mixing of different layers followed by changes of phase composition during material evaporation (preferential volatilization) and bulk re-solidification [4.230] this reduces the lateral and depth resolution of LA-based techniques. [Pg.233]

Naqvi [134] has proposed an alternative model to the Frye and Horst mechanism for the degradation and stabilization of PVC. At room temperature, PVC is well below its glass transition temperature (about 81°C). The low thermal stability of the polymer may be due to the presence of undesirable concentrations of like-poles in the more or less frozen matrix with strong dipoles. Such concentrations, randomly distributed in the polymer matrix, may be considered to constitute weak or high energy spots in the polymer, the possible sites of initiation of thermal dehydrochlorination. [Pg.327]


See other pages where Thermal spots is mentioned: [Pg.571]    [Pg.580]    [Pg.37]    [Pg.255]    [Pg.290]    [Pg.294]    [Pg.427]    [Pg.152]    [Pg.204]    [Pg.13]    [Pg.466]    [Pg.483]    [Pg.251]    [Pg.443]    [Pg.27]    [Pg.51]    [Pg.51]    [Pg.351]    [Pg.51]    [Pg.336]    [Pg.168]    [Pg.517]    [Pg.486]    [Pg.459]    [Pg.508]    [Pg.97]    [Pg.83]    [Pg.218]    [Pg.176]    [Pg.258]    [Pg.261]    [Pg.77]    [Pg.563]    [Pg.67]    [Pg.379]   
See also in sourсe #XX -- [ Pg.221 , Pg.441 ]




SEARCH



© 2024 chempedia.info