Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Young-Laplace Equation

Equation 11-3 is a special case of a more general relationship that is the basic equation of capillarity and was given in 1805 by Young [1] and by Laplace [2]. In general, it is necessary to invoke two radii of curvature to describe a curved surface these are equal for a sphere, but not necessarily otherwise. A small section of an arbitrarily curved surface is shown in Fig. II-3. The two radii of curvature, R and / 2 t ate indicated in the figure, and the section of surface taken [Pg.6]

If the first plane is rotated through a full circle, the first radius of curvature will go through a minimum, and its value at this minimum is called the principal radius of curvature. The second principal radius of curvature is then that in the second plane, kept at right angles to the first. Because Fig. II-3 and Eq. II-7 are obtained by quite arbitrary orientation of the first plane, the radii R and R2 are not necessarily the principal radii of curvature. The pressure difference AP, cannot depend upon the manner in which and R2 are chosen, however, and it follows that the sum ( /R + l/f 2) is independent of how the first plane is oriented (although, of course, the second plane is always at right angles to it). [Pg.6]

The work done in forming this additional amount of surface is then [Pg.7]

There will be a pressure difference AP across the surface it acts on the area xy and through a distance dz. The corresponding work is thus [Pg.7]

Most of the situations encountered in capillarity involve figures of revolution, and for these it is possible to write down explicit expressions for and R2 by choosing plane 1 so that it passes through the axis of revolution. As shown in Fig. II-7n, R then swings in the plane of the paper, i.e., it is the curvature of the profile at the point in question. R is therefore given simply by the expression from analytical geometry for the curvature of a line [Pg.7]


There are a number of relatively simple experiments with soap films that illustrate beautifully some of the implications of the Young-Laplace equation. Two of these have already been mentioned. Neglecting gravitational effects, a film stretched across a frame as in Fig. II-1 will be planar because the pressure is the same as both sides of the film. The experiment depicted in Fig. II-2 illustrates the relation between the pressure inside a spherical soap bubble and its radius of curvature by attaching a manometer, AP could be measured directly. [Pg.8]

Returning to equilibrium shapes, these have been determined both experimentally and by solution of the Young-Laplace equation for a variety of situations. Examples... [Pg.9]

An approximate treatment of the phenomenon of capillary rise is easily made in terms of the Young-Laplace equation. If the liquid completely wets the wall of the capillary, the liquids surface is thereby constrained to lie parallel to the wall at the region of contact and the surface must be concave in shape. The... [Pg.10]

The exact treatment of capillary rise must take into account the deviation of the meniscus from sphericity, that is, the curvature must correspond to the AP = Ap gy at each point on the meniscus, where y is the elevation of that point above the flat liquid surface. The formal statement of the condition is obtained by writing the Young-Laplace equation for a general point (x, y) on the meniscus, with R and R2 replaced by the expressions from analytical geometry given in... [Pg.12]

Equations II-12 and 11-13 illustrate that the shape of a liquid surface obeying the Young-Laplace equation with a body force is governed by differential equations requiring boundary conditions. It is through these boundary conditions describing the interaction between the liquid and solid wall that the contact angle enters. [Pg.13]

As with all thermodynamic relations, the Kelvin equation may be arrived at along several paths. Since the occurrence of capillary condensation is intimately, bound up with the curvature of a liquid meniscus, it is helpful to start out from the Young-Laplace equation, the relationship between the pressures on opposite sides of a liquid-vapour interface. [Pg.118]

Substitution for dx iand dy in Equation (3.3) gives the Young-Laplace equation ... [Pg.119]

The first approach developed by Hsu (1962) is widely used to determine ONE in conventional size channels and in micro-channels (Sato and Matsumura 1964 Davis and Anderson 1966 Celata et al. 1997 Qu and Mudawar 2002 Ghiaasiaan and Chedester 2002 Li and Cheng 2004 Liu et al. 2005). These models consider the behavior of a single bubble by solving the one-dimensional heat conduction equation with constant wall temperature as a boundary condition. The temperature distribution inside the surrounding liquid is the same as in the undisturbed near-wall flow, and the temperature of the embryo tip corresponds to the saturation temperature in the bubble 7s,b- The vapor temperature in the bubble can be determined from the Young-Laplace equation and the Clausius-Clapeyron equation (assuming a spherical bubble) ... [Pg.260]

Bubble Point Large areas of microfiltration membrane can be tested and verified by a bubble test. Pores of the membrane are filled with liquid, then a gas is forced against the face of the membrane. The Young-Laplace equation, AF = (4y cos Q)/d, relates the pressure required to force a bubble through a pore to its radius, and the interfacial surface tension between the penetrating gas and the liquid in the membrane pore, y is the surface tension (N/m), d is the pore diameter (m), and P is transmembrane pressure (Pa). 0 is the liquid-solid contact angle. For a fluid wetting the membrane perfectly, cos 0 = 1. [Pg.55]

The oil-water dynamic interfacial tensions are measured by the pulsed drop (4) technique. The experimental equipment consists of a syringe pump to pump oil, with the demulsifier dissolved in it, through a capillary tip in a thermostated glass cell containing brine or water. The interfacial tension is calculated by measuring the pressure inside a small oil drop formed at the tip of the capillary. In this technique, the syringe pump is stopped at the maximum bubble pressure and the oil-water interface is allowed to expand rapidly till the oil comes out to form a small drop at the capillary tip. Because of the sudden expansion, the interface is initially at a nonequilibrium state. As it approaches equilibrium, the pressure, AP(t), inside the drop decays. The excess pressure is continuously measured by a sensitive pressure transducer. The dynamic tension at time t, is calculated from the Young-Laplace equation... [Pg.367]

The Young-Laplace equation gives the equilibrium pressure difference (mechanical equilibrium) at the menisci between liquid water in membrane pores and vapor in the adjacent phase ... [Pg.372]

Recent theoretical studies indicate that thermal fluctuation of a liquid/ liquid interface plays important roles in chemical/physical properties of the surface [34-39], Thermal fluctuation of a liquid surface is characterized by the wavelength of a capillary wave (A). For a macroscopic flat liquid/liquid interface with the total length of the interface of /, capillary waves with various A < / are allowed, while in the case of a droplet, A should be smaller than 2nr (Figure 1) [40], Therefore, surface phenomena should depend on the droplet size. Besides, a pressure (AP) or chemical potential difference (An) between the droplet and surrounding solution phase increases with decreasing r as predicted by the Young-Laplace equation AP = 2y/r, where y is an interfacial tension [33], These discussions indicate clearly that characteristic behavior of chemical/physical processes in droplet/solution systems is elucidated only by direct measurements of individual droplets. [Pg.176]

The controlled drop tensiometer is a simple and very flexible method for measuring interfacial tension (IFI) in equilibrium as well as in various dynamic conditions. In this technique (Fig. 1), the capillary pressure, p of a drop, which is formed at the tip of a capillary and immersed into another immiscible phase (liquid or gas), is measured by a sensitive pressure transducer. The capillary pressure is related to the IFT and drop radius, R, through the Young-Laplace equation [2,3] ... [Pg.2]

For relatively thick films (higher than about 30 nm), the pressure drop at the film is the sum of the capillary pressures at the two film interfaces. In this case, the Young-Laplace equation for the film can be written as... [Pg.4]

The Young-Laplace equation has several fundamental implications ... [Pg.9]

These considerations are valid for any small part of the liquid surface. Since the part is arbitrary the Young-Laplace equation must be valid everywhere. [Pg.11]

The shape of a liquid surface is determined by the Young-Laplace equation. In large structures we have to consider also the hydrostatic pressure. Then the equation of Young and Laplace becomes... [Pg.12]

In the Maximum-bubble-pressure method the surface tension is determined from the value of the pressure which is necessary to push a bubble out of a capillary against the Laplace pressure. Therefore a capillary tube, with inner radius rc, is immersed into the liquid (Fig. 2.9). A gas is pressed through the tube, so that a bubble is formed at its end. If the pressure in the bubble increases, the bubble is pushed out of the capillary more and more. In that way, the curvature of the gas-liquid interface increases according to the Young-Laplace equation. The maximum pressure is reached when the bubble forms a half-sphere with a radius r/s V(j. This maximum pressure is related to the surface tension by 7 = rcAP/2. If the volume of the bubble is further increased, the radius of the bubble would also have to become larger. A larger radius corresponds to a smaller pressure. The bubble would thus become unstable and detach from the capillary tube. [Pg.13]

In this chapter we get to know the second essential equation of surface science — the Kelvin5 equation. Like the Young-Laplace equation it is based on thermodynamic principles and does not refer to a special material or special conditions. The subject of the Kelvin equation is the vapor pressure of a liquid. Tables of vapor pressures for various liquids and different temperatures can be found in common textbooks or handbooks of physical chemistry. These vapor pressures are reported for vapors which are in thermodynamic equilibrium with liquids having planar surfaces. When the liquid surface is curved, the vapor pressure changes. The vapor pressure of a drop is higher than that of a flat, planar surface. In a bubble the vapor pressure is reduced. The Kelvin equation tells us how the vapor pressure depends on the curvature of the liquid. [Pg.15]

As a consequence of surface tension, there is a balancing pressure difference across any curved surface, the pressure being greater on the concave side. For a curved surface with principal radii of curvature rj and r2 this pressure difference is given by the Young-Laplace equation, Ap = y(llrx + l/r2), which reduces to Ap = 2y/r for a spherical surface. [Pg.67]

This is the Young-Laplace equation. For spherical droplets or bubbles of radius R in a dilute emulsion or foam,... [Pg.61]

The Young-Laplace equation forms the basis for some important methods for measuring surface and interfacial tensions, such as the pendant and sessile drop methods, the spinning drop method, and the maximum bubble pressure method (see Section 3.2.3). Liquid flow in response to the pressure difference expressed by Eqs. (3.6) or (3.7) is known as Laplace flow, or capillary flow. [Pg.61]

At z=0 AP = 2y/b.) Defining /3=Apgb2/y° and substituting into the Young-Laplace equation yields one form of the Bashforth-Adams equation ... [Pg.67]


See other pages where The Young-Laplace Equation is mentioned: [Pg.6]    [Pg.6]    [Pg.53]    [Pg.60]    [Pg.118]    [Pg.157]    [Pg.175]    [Pg.485]    [Pg.264]    [Pg.17]    [Pg.265]    [Pg.205]    [Pg.206]    [Pg.638]    [Pg.639]    [Pg.60]    [Pg.99]    [Pg.10]    [Pg.11]    [Pg.31]    [Pg.229]    [Pg.61]    [Pg.61]   


SEARCH



Equation Laplace

Equation Young

Equation Young-Laplace

Laplace

The Laplace equation

Young-Laplace

© 2024 chempedia.info