Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thallium cyanide

Thallium. Cyanide exchange on [T1(CN)4] in aqueous solution has been studied by and Tl NMR spectroscopy. "" The dissociation of acetate from c/s-acetato-A-p-nitrobenzoylimido-meso-tetraphenylporphyrinatothal-lium has been investigated by NMR spectroscopy. The formation of [Tl(en)J has been established by means of and Tl NMR spectroscopy. ... [Pg.58]

Unlike boron, aluminum, gallium, and indium, thallium exists in both stable univalent (thaHous) and trivalent (thaUic) forms. There are numerous thaHous compounds, which are usually more stable than the corresponding thaUic compounds. The thaUium(I) ion resembles the alkaU metal ions and the silver ion in properties. In this respect, it forms a soluble, strongly basic hydroxide and a soluble carbonate, oxide, and cyanide like the alkaU metal ions. However, like the silver ion, it forms a very soluble fluoride, but the other haUdes are insoluble. Thallium (ITT) ion resembles aluminum, gallium, and indium ions in properties. [Pg.468]

The capability of zinc to reduce the ions of many metals to theh metallic state is the basis of important appHcations. However, metals are removed from zinc solutions by displacement with finely divided zinc before winning by electrolysis. Gold and silver are displaced from cyanide leach solutions with zinc and the following metals are similarly recovered from various solutions platinum group, cadmium, indium, thallium, and sometimes copper. [Pg.398]

Determination of silver as chloride Discussion. The theory of the process is given under Chloride (Section 11.57). Lead, copper(I), palladium)II), mercury)I), and thallium)I) ions interfere, as do cyanides and thiosulphates. If a mercury(I) [or copper(I) or thallium(I)] salt is present, it must be oxidised with concentrated nitric acid before the precipitation of silver this process also destroys cyanides and thiosulphates. If lead is present, the solution must be diluted so that it contains not more than 0.25 g of the substance in 200 mL, and the hydrochloric acid must be added very slowly. Compounds of bismuth and antimony that hydrolyse in the dilute acid medium used for the complete precipitation of silver must be absent. For possible errors in the weight of silver chloride due to the action of light, see Section 11.57. [Pg.467]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

Trithiadiazepine 4 is readily thalliated by thallium(III) trifluoroacetate the product 19 reacts in situ with potassium iodide, copper(I) cyanide, and methanol/carbon monoxide300 to give 20a-c, respectively.33 ... [Pg.483]

AuCN has a similar structure to AgCN and likewise dissolves in excess cyanide to form Au(CN)J this is important in the extraction of gold. It has been characterized as various salts (Tl, K, Bu4N, Cs) with Au-C 1.964A (Bu4N salt [91]). The thallium salt has short Au-Au (3.10A) and Au-Tl (3.50 A) interactions extended-Huckel calculations indicate the importance of relativistic effects in these covalent interactions. Isocyanides form stable complexes ... [Pg.296]

The reaction has also been accomplished with thallium(I) cyanide, with... [Pg.573]

Mercuration of aromatic compounds can be accomplished with mercuric salts, most often Hg(OAc)2 ° to give ArHgOAc. This is ordinary electrophilic aromatic substitution and takes place by the arenium ion mechanism (p. 675). ° Aromatic compounds can also be converted to arylthallium bis(trifluoroacetates), ArTl(OOCCF3)2, by treatment with thallium(III) trifluoroacetate in trifluoroace-tic acid. ° These arylthallium compounds can be converted to phenols, aryl iodides or fluorides (12-28), aryl cyanides (12-31), aryl nitro compounds, or aryl esters (12-30). The mechanism of thallation appears to be complex, with electrophilic and electron-transfer mechanisms both taking place. [Pg.793]

Organic pollutants Pesticides Metals Antimony Arsenic Asbestos Beryllium Cadmium Chromium Copper Cyanide Lead Mercury Nickel Selenium Silver Thallium Zinc... [Pg.216]

Inorganic elements can be broadly classified as metals and nonmetals. Most metallic elements become toxic at some concentration. Nine elements (arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, and thallium) and cyanide are defined as hazardous inorganics for the purposes of deep-well injection. [Pg.819]

Nitrosalicylhydrazide, 2778 Scandium 3-nitrobenzoate, 3816 Silver osmate, 0034 Thallium bromate, 0260 Thallium(I) methanediazoate, 0458 Thallium(I) 2- or 4-nitrophenoxide, 2187 Thallium acz-phenylnitromethanide, 2723 See also METAL AZIDES, METAL CYANIDES (AND CYANO COMPLEXES), /V-MKTAL DERIVATIVES... [Pg.191]

Acyl cyanides1708 can be prepared by treatment of acyl halides with copper cyanide. The mechanism is not known and might be free-radical or nucleophilic substitution. The reaction has also been accomplished with thallium(I) cyanide,1709 with MejSiCN and an SnCl4 catalyst,1710 and with Bu3SnCN,1711 but these reagents are successful only when R = aryl or tertiary alkyl. KCN has also been used, along with ultrasound,1712 as has NaCN with phase transfer catalysts.1713 OS III, 119. [Pg.495]

Alkali metal 1-methyl- and 1-phenyl-borinates are also available from bis(borinato)cobalt complexes (see below) on treatment with sodium or potassium cyanide in an aprotic solvent like acetonitrile. Cobalt cyanide precipitates and the alkali borinate remains in solution. After addition of thallium(I) chloride to some complexes, thallium 1-methyl- or 1-phenyl-borinate could be isolated as pale yellow solids, the only main group borinates isolated hitherto. They are insoluble in most organic solvents but readily soluble in pyridine and DMSO. The solids are stable on treatment with water and aqueous potassium hydride, but are decomposed by acids <78JOM(153)265). [Pg.643]

For the recoveiy of thallium from the flue dust of pyrite burners, the dust is boiled with H2O, allowed to stand some time, filtered, and HC1 added to die filtrate, whereupon crude thallous chloride is precipitated. This is purified by further treatment, and thallium metal obtained (1) by electrolysis of the sulfate solution or (2) by fusion of the chloride widi sodium cyanide and carbonate. [Pg.1603]

NMO NMP Nu PPA PCC PDC phen Phth PPE PPTS Red-Al SEM Sia2BH TAS TBAF TBDMS TBDMS-C1 TBHP TCE TCNE TES Tf TFA TFAA THF THP TIPBS-C1 TIPS-C1 TMEDA TMS TMS-C1 TMS-CN Tol TosMIC TPP Tr Ts TTFA TTN N-methylmorpholine N-oxide jV-methyl-2-pyrrolidone nucleophile polyphosphoric acid pyridinium chlorochromate pyridinium dichromate 1,10-phenanthroline phthaloyl polyphosphate ester pyridinium p-toluenesulfonate sodium bis(methoxyethoxy)aluminum dihydride (3-trimethylsilylethoxy methyl disiamylborane tris(diethylamino)sulfonium tetra-n-butylammonium fluoride f-butyldimethylsilyl f-butyldimethylsilyl chloride f-butyl hydroperoxide 2,2,2-trichloroethanol tetracyanoethylene triethylsilyl triflyl (trifluoromethanesulfonyl) trifluoroacetic acid trifluoroacetic anhydride tetrahydrofuran tetrahydropyranyl 2,4,6-triisopropylbenzenesulfonyl chloride 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane tetramethylethylenediamine [ 1,2-bis(dimethylamino)ethane] trimethylsilyl trimethylsilyl chloride trimethylsilyl cyanide tolyl tosylmethyl isocyanide meso-tetraphenylporphyrin trityl (triphenylmethyl) tosyl (p-toluenesulfonyl) thallium trifluoroacetate thallium(III) nitrate... [Pg.1319]


See other pages where Thallium cyanide is mentioned: [Pg.1800]    [Pg.17]    [Pg.58]    [Pg.1458]    [Pg.262]    [Pg.927]    [Pg.1800]    [Pg.17]    [Pg.58]    [Pg.1458]    [Pg.262]    [Pg.927]    [Pg.157]    [Pg.232]    [Pg.232]    [Pg.172]    [Pg.818]    [Pg.43]    [Pg.360]    [Pg.100]    [Pg.598]    [Pg.424]    [Pg.636]    [Pg.1243]    [Pg.533]    [Pg.609]    [Pg.400]    [Pg.785]    [Pg.157]    [Pg.202]    [Pg.818]    [Pg.1577]   
See also in sourсe #XX -- [ Pg.495 ]

See also in sourсe #XX -- [ Pg.476 ]




SEARCH



Thallium complexes cyanides

© 2024 chempedia.info