Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TFIID

The DNA part of each control module can be divided into three main regions, the core or basal promoter elements, the promoter proximal elements and the distal enhancer elements (Figure 9.1). The best characterized core promoter element is the TATA box, a DNA sequence that is rich in A-T base pairs and located 25 base pairs upstream of the transcription start site. The TATA box is recognized by one of the basal transcription factors, the TATA box-binding protein, TBP, which is part of a multisubunit complex called TFIID. This complex in combination with RNA polymerase 11 and other basal transcription factors such as TFIIA and TFIIB form a preinitiation complex for transcription. [Pg.151]

The general transcription factor TFllD is believed to be the key link between specific transcription factors and the general preinitiation complex. However, the purification and molecular characterization of TFllD from higher eucaryotes have been hampered by its instability and heterogeneity. All preparations of TFllD contain the TATA box-binding protein in combination with a variety of different proteins called TBP-associated factors, TAFs. When the preinitiation complex has been assembled, strand separation of the DNA duplex occurs at the transcription start site, and RNA polymerase II is released from the promoter to initiate transcription. However, TFIID can remain bound to the core promoter and support rapid reinitiation of transcription by recruiting another molecule of RNA polymerase. [Pg.152]

The side of the p sheet that faces away from DNA is covered by two long a helices. One of these helices contains a number of basic residues from the middle segment of the polypeptide chain while the second helix is formed by the C-terminal residues. Residues from these two helices and from the short loop that joins the two motifs (red in Figure 9.4) are likely candidates for interactions with other subunits of the TFIID complex, and with specific transcription factors. [Pg.154]

The sharp bend of DNA at the TATA box induced by TBP binding is favorable for the formation of the complete DNA control module in particular, for the interaction of specific transcription factors with TFIID. Since these factors may bind to DNA several hundred base pairs away from the TATA box, and at the same time may interact with TBP through one or several TAFs, there must be several protein-DNA interactions within this module that distort the regular B-DNA structure (see Figure 9.2). The DNA bend caused by the binding of TBP to the TATA box is one important step to bring activators near to the site of action of RNA polymerase. [Pg.158]

Given that these proteins have properly assembled, the initiation complex is ready to start transcription. How does the enzyme get started A component of TFIID, again a multi-subunit complex TFIIH, unwinds the DNA and phosphorylates serine-5 of the C-terminal tail (CTD) of the largest polymerase subunit (Rpbl). Serine-5 phosphorylation and phosphorylation of serine-2 (by pTEFb) are required to release the enzyme from the other components of the initiation complex and to start RNA synthesis. [Pg.1225]

Figure 37-9. The eukaryotic basal transcription complex. Formation of the basal transcription complex begins when TFIID binds to the TATA box. It directs the assembly of several other components by protein-DNA and protein-protein interactions. The entire complex spans DNA from position -30 to +30 relative to the initiation site (+1, marked by bent arrow). The atomic level, x-ray-derived structures of RNA polymerase II alone and ofTBP bound to TATA promoter DNA in the presence of either TFIIB or TFIIA have all been solved at 3 A resolution. The structure of TFIID complexes have been determined by electron microscopy at 30 A resolution. Thus, the molecular structures of the transcription machinery are beginning to be elucidated. Much of this structural information is consistent with the models presented here. Figure 37-9. The eukaryotic basal transcription complex. Formation of the basal transcription complex begins when TFIID binds to the TATA box. It directs the assembly of several other components by protein-DNA and protein-protein interactions. The entire complex spans DNA from position -30 to +30 relative to the initiation site (+1, marked by bent arrow). The atomic level, x-ray-derived structures of RNA polymerase II alone and ofTBP bound to TATA promoter DNA in the presence of either TFIIB or TFIIA have all been solved at 3 A resolution. The structure of TFIID complexes have been determined by electron microscopy at 30 A resolution. Thus, the molecular structures of the transcription machinery are beginning to be elucidated. Much of this structural information is consistent with the models presented here.
Figure 37-10. Two models for assembly of the active transcription complex and for how activators and coactivators might enhance transcription. Shown here as a small oval is TBP, which contains TFIID, a large oval that contains all the components of the basal transcription complex illustrated in Figure 37-9 (ie, RNAPII andTFIIA,TFIIB, TFIIE,TFIIF, and TFIIFI). Panel A The basal transcription complex is assembled on the promoter after the TBP subunit of TFIID is bound to the TATA box. Several TAFs (coactivators) are associated with TBP. In this example, a transcription activator, CTF, is shown bound to the CAAT box, forming a loop complex by interacting with a TAF bound to TBP. Panel B The recruitment model. The transcription activator CTF binds to the CAAT box and interacts with a coactivator (TAF in this case). This allows for an interaction with the preformed TBP-basal transcription complex. TBP can now bind to the TATA box, and the assembled complex is fully active. Figure 37-10. Two models for assembly of the active transcription complex and for how activators and coactivators might enhance transcription. Shown here as a small oval is TBP, which contains TFIID, a large oval that contains all the components of the basal transcription complex illustrated in Figure 37-9 (ie, RNAPII andTFIIA,TFIIB, TFIIE,TFIIF, and TFIIFI). Panel A The basal transcription complex is assembled on the promoter after the TBP subunit of TFIID is bound to the TATA box. Several TAFs (coactivators) are associated with TBP. In this example, a transcription activator, CTF, is shown bound to the CAAT box, forming a loop complex by interacting with a TAF bound to TBP. Panel B The recruitment model. The transcription activator CTF binds to the CAAT box and interacts with a coactivator (TAF in this case). This allows for an interaction with the preformed TBP-basal transcription complex. TBP can now bind to the TATA box, and the assembled complex is fully active.
The formation of the PIC described above is based on the sequential addition of purified components in in vitro experiments. An essential feature of this model is that the assembly takes place on the DNA template. Accordingly, transcription activators, which have autonomous DNA binding and activation domains (see Chapter 39), are thought to function by stimulating either PIC formation or PIC function. The TAF coactivators are viewed as bridging factors that communicate between the upstream activators, the proteins associated with pol II, or the many other components of TFIID. This view, which assumes that there is stepwise assembly of the PIC—promoted by various interactions between activators, coactivators, and PIC components— is illustrated in panel A of Figure 37-10. This model was supported by observations that many of these proteins could indeed bind to one another in vitro. [Pg.351]

Nakatani, Y., Horikoshi, M., Brenner, M., Yamamoto, T., Besnard, F., Roeder, R. G., and Freese,E. (1990). Adownstream initiation element required for efficient TATA box binding and in vitro function of TFIID. Nature 348 86-88. [Pg.146]

TAF 250 TBP-Associated Factor II 250. Another direct connection between acetylation and transcriptional activation was demonstrated with the discovery that one of the TAFII (TATA-binding protein [TBP]-associated factor) subunits of the general transcription factor TFIID is itself a HAT. TFIID is one of the general factors required for the assembly of the RNA polymerase II transcription preinitiation... [Pg.266]

Transcription factors (such as TFIID for RNA polymerase II) help to initiate transcription. The requirements for termination of transcription in eukaryotes are not well understood. All transcription can be inhibited by actinomycin D. In addition, RNA polymerase II is inhibited by a-amanitin (a toxin from certain mushrooms). These points are summarized in Table 1-3-1,... [Pg.30]

Requires sigma (a) to initiate at a promoter No sigma, but transcription factors (TFIID) bind before RNA polymerase... [Pg.31]

Initiation of transcription Promoter (-10) TATAAT and (-35) sequence Sigma initiation sub-unit required to recognize promoter ib omoter (-25) TATA and (-70) CAAT Transcription fectors (TFIID) bind promoter... [Pg.39]

In eukaryotes, general transcription factors must bind to the promoter to allow RNA polymerase II to bind and form the initiation complex at the start site for transcription. General manscription factors are common to most genes. The general transcription factor TFIID (the TATA fector) must bind to the TATA box before RNA polymerase II can bind. Other examples delude SP-1 and NF-.l that modulate basal transcription of many genes. [Pg.73]

MLL (also named ALL-1, HRX, and HTRX), the human homolog of Drosophila trithorax, is a SET domain protein that methylates H3 at Lys-4. The enzymatic activity was enhanced with H3 acetylated at Lys-9 or Lys-14. MLL is a component of a large multiprotein complex composed of greater than 29 proteins, including TFIID, SWI/SNF remodeling complex and NuRD, a histone deacetylase complex. MLL binds to the promoter of Hox genes and regulates their expression [202,203]. [Pg.224]

This consists of DNA-dependent RNA polymerase II and basal transcription factors (TFIIX, X = A - H). First, the basal factor TFIID binds to the promoter. TFIID, a large complex of numerous proteins, contains TATA boxbinding protein (TBP) and so-called TAFs (TBP-associated factors). The polymerase is attached to this core with the help of TFIIB. Before transcription starts, additional TFs have to bind, including TFIIH, which has heli-case activity and separates the two strands of DNA during elongation. In all, some 35 differ-... [Pg.244]

Vermeulen, M. et al. (2007) Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4. Cell, 131, 58-69. [Pg.20]

There are also indications that the composition of TFIID is not fixed, but may vary depending on the detailed structure of the promoter. This idea is corroborated by the isolation of a transcription-competent TFIID that supports transcription without requiring TBP binding (Apone Green, 1998). [Pg.44]

TFIIA and TFIIB support TFIID in the formation of a stable complex with the promotor. TFllB is necessary for the downstream selection of the start site for RNA polymerase 11. Interactions with TFllB ensure correct positioning of the RNA polymerase 11 on the promoter. Crystal structures have been solved for several of the intermediates of the pre-initiation complex (review Sokolev and Burley, 1997), showing, for example, that TBP affects a predominant kink in the DNA (see Fig. 1.16). TFIIB binds to the TBP-DNA complex, contacting both TBP and the DNA. [Pg.44]

TFllF is found in a pre-formed complex with RNA polymerase II and suppresses the non-specific binding of RNA polymerase to DNA. TFIIF supports the association of RNA polymerase with the promoter boimd complex of TFIIA, TFIIB and TFIID. [Pg.44]


See other pages where TFIID is mentioned: [Pg.1225]    [Pg.423]    [Pg.136]    [Pg.138]    [Pg.346]    [Pg.348]    [Pg.348]    [Pg.350]    [Pg.350]    [Pg.351]    [Pg.351]    [Pg.352]    [Pg.460]    [Pg.199]    [Pg.122]    [Pg.235]    [Pg.325]    [Pg.67]    [Pg.122]    [Pg.132]    [Pg.299]    [Pg.321]    [Pg.10]    [Pg.12]    [Pg.41]    [Pg.41]    [Pg.43]    [Pg.43]    [Pg.45]   
See also in sourсe #XX -- [ Pg.346 , Pg.350 , Pg.351 ]

See also in sourсe #XX -- [ Pg.41 , Pg.44 ]

See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.601 , Pg.603 ]

See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.34 ]

See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Regulation of TFIID

TFIIA/TFIIB/TFIID/TFIIE/TFIIF/TFIIH

TFIID Components and Structure

TFIID complexes

TFIID components

TFIID formation

TFIID functions

TFIID promoter recognition

TFIID recruitment

TFIID regulation

TFIID structure

TFIID subunit structure

TFIID subunits

TFIID transcription initiation

TFIID-Chromatin

The Requirement for TFIID In Vivo

Transcription factor TFIID

© 2024 chempedia.info