Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tertiary carbocations, stability

FIGURE 4 13 The order of carbocation stability is methyl < primary < second ary < tertiary Alkyl groups that are directly attached to the positively charged car bon stabilize carbocations... [Pg.160]

One important experimental fact is that the rate of reaction of alcohols with hydro gen halides increases m the order methyl < primary < secondary < tertiary This reac tivity order parallels the carbocation stability order and is readily accommodated by the mechanism we have outlined... [Pg.162]

One way to assess the relative stabilities of these various intermediates is to exam me electron delocalization m them using a resonance description The cyclohexadienyl cations leading to o and p mtrotoluene have tertiary carbocation character Each has a resonance form m which the positive charge resides on the carbon that bears the methyl group... [Pg.489]

Oxygen stabilized carbocations of this type are far more stable than tertiary carbocations They are best represented by structures m which the positive charge is on oxygen because all the atoms have octets of electrons m such a structure Their stability permits them to be formed rapidly resulting m rates of electrophilic aromatic substitution that are much faster than that of benzene... [Pg.496]

The second point to explore involves carbocation stability. 2-Methyl-propene might react with H+ to form a carbocation having three alkyl substituents (a tertiary ion, 3°), or it might react to form a carbocation having one alkyl substituent (a primary ion, 1°). Since the tertiary alkyl chloride, 2-chloro-2-methylpropane, is the only product observed, formation of the tertiary cation is evidently favored over formation of the primary cation. Thermodynamic measurements show that, indeed, the stability of carbocations increases with increasing substitution so that the stability order is tertiary > secondary > primary > methyl. [Pg.195]

One way of determining carbocation stabilities is to measure the amount of energy required to form the carbocation by dissociation of the corresponding alkyl halide, R-X - R+ + X . As shown in Figure 6.10, tertiary alkyl halides dissociate to give carbocations more easily than secondary or primary ones. As a result, trisubstituted carbocations are more stable than disubstituted ones, which are more stable than monosubstituted ones. The data in Figure 6.10 are taken from measurements made in the gas phase, but a similar stability order is found for carbocations in solution. The dissociation enthalpies are much lower in solution because polar solvents can stabilize the ions, but the order of carbocation stability remains the same. [Pg.195]

Figure 6.11 A comparison of inductive stabilization for methyl, primary, secondary, and tertiary carbocations. The more alkyl groups there are bonded to the positively charged carbon, the more electron density shifts toward the charge, making the charged carbon less electron-poor (blue in electrostatic potential maps). Figure 6.11 A comparison of inductive stabilization for methyl, primary, secondary, and tertiary carbocations. The more alkyl groups there are bonded to the positively charged carbon, the more electron density shifts toward the charge, making the charged carbon less electron-poor (blue in electrostatic potential maps).
Step 3 of Figure 27.14 Third Cyclization The third cationic cyclization is somewhat unusual because it occurs with non-Markovnikov regiochemistry and gives a secondary cation at C13 rather than the alternative tertiary cation at C14. There is growing evidence, however, that the tertiary carbocation may in fact be formed initially and that the secondary cation arises by subsequent rearrangement. The secondary cation is probably stabilized in the enzyme pocket by the proximity of an electron-rich aromatic ring. [Pg.1088]

When double bonds are reduced by lithium in ammonia or amines, the mechanism is similar to that of the Birch reduction (15-14). ° The reduction with trifluoro-acetic acid and EtsSiH has an ionic mechanism, with H coming in from the acid and H from the silane. In accord with this mechanism, the reaction can be applied only to those alkenes that when protonated can form a tertiary carbocation or one stabilized in some other way (e.g., by a OR substitution). It has been shown, by the detection of CIDNP, that reduction of a-methylstyrene by hydridopenta-carbonylmanganese(I) HMn(CO)5 involves free-radical addition. ... [Pg.1008]

The mechanism involves a simple 1,2 shift. The ion (52, where all four R groups are Me) has been trapped by the addition of tetrahydrothiophene. It may seem odd that a migration takes place when the positive charge is already at a tertiary position, but carbocations stabilized by an oxygen atom are even more stable than tertiary alkyl cations (p. 323). There is also the driving force supplied by the fact that the new carbocation can immediately stabilize itself by losing a proton. [Pg.1397]

For now, let s consider the effect of the substrate on the rate of an El process. The rate is fonnd to be very sensitive to the nature of the starting aUcyl halide, with tertiary halides reacting more readily than secondary halides and primary halides generally do not nndergo El reactions. This trend is identical to the trend we saw for SnI reactions, and the reason for the trend is the same as well. Specihcally, the rate-determining step of the mechanism involves formation of a carbocation intermediate, so the rate of the reaction will be dependent on the stability of the carbocation (recall that tertiary carbocations are more stable than secondary carbocations). [Pg.233]

The partitioning of simple tertiary carbocations, ring-substituted 1-phenylethyl carbocations, and cumyl carbocations between deprotonation and nucleophilic addition of solvent strongly favors formation of the solvent adduct. The more favorable partitioning of these carbocations to form the solvent adduct is due, in part, to the greater thermodynamic stability of the solvent... [Pg.110]

The 2-methyl-2-butyl cation (12) is the smallest tertiary carbocation structurally suitable for stabilization through C-C hyperconjugation. [Pg.129]

Primary carbocations Should you wish to use carbocations in a reaction mechanism, you must consider the relative stability of these entities. Tertiary carbocations are OK, and in many cases so are secondary carbocations. Primary carbocations are just not stable enough, unless there is the added effect of resonance, as in benzylic or ally lie systems. [Pg.180]

This is observed in the case of the secondary alcohol illustrated, where a secondary carbocation would be generated. A methyl migration would merely lead to another secondary carbocation, and this serves no stabilizing effect. However, a hydride migration produces a tertiary carbocation, so this process will stabilize the system. This is what actually happens, and the major product is a bromide where the halogen appears to have attacked the wrong position. [Pg.216]

The vinyl halide product is then able to react with a further mole of HX, and the halide atom already present influences the orientation of addition in this step. The second halide adds to the carbon that already carries a halide. In the case of the second addition of HX to RC CH, we can see that we are now considering the relative stabilities of tertiary and primary carbocations. The halide s inductive effect actually destabilizes the tertiary carbocation. Nevertheless, this is outweighed by a favourable stabilization from the halide by overlap of lone pair electrons, helping to disperse the positive charge. [Pg.292]

There are stability considerations with carboca-tions, with tertiary carbocations being more stable than secondary ones if your mechanism includes CHs" or RCH2, it is almost certainly wrong Car-bocation mechanisms are also going to be much more likely under acidic conditions (H+) rather than under basic conditions (HO ). [Pg.613]

Now for the relative proportions of products. Only 3% of the unrearranged product shows just how unfavourable the secondary carbocation is compared with the rearranged tertiary carbocation. The relative proportions of the other two alkenes are explained by the increased thermodynamic stability of the more-substituted alkene, though this is not sufficient to produce just the single product. [Pg.647]

This reaction may account in part for the oligomers obtained in the polymerization of pro-pene, 1-butene, and other 1-alkenes where the propagation reaction is not highly favorable (due to the low stability of the propagating carbocation). Unreactive 1-alkenes and 2-alkenes have been used to control polymer molecular weight in cationic polymerization of reactive monomers, presumably by hydride transfer to the unreactive monomer. The importance of hydride ion transfer from monomer is not established for the more reactive monomers. For example, hydride transfer by monomer is less likely a mode of chain termination compared to proton transfer to monomer for isobutylene polymerization since the tertiary carbocation formed by proton transfer is more stable than the allyl carbocation formed by hydride transfer. Similar considerations apply to the polymerizations of other reactive monomers. Hydride transfer is not a possibility for those monomers without easily transferable hydrogens, such as A-vinylcarbazole, styrene, vinyl ethers, and coumarone. [Pg.385]

Stabilized ketene 6S. For l, 2 -disubstituted epoxide, species 6S undergoes 6-endo-dig electrocyclization (path b) [24] to form the six-membered ketone 66, ultimately giving naphthol products. l, 2, 2 -Trisubstituted epoxide species 6S undergoes 5-endo-dig cyclization (path a) to give the ketone species 67, finally producing l-alkylidene-2-indanones. The dialkyl substituent of the epoxide enhances the 5-endo-dig cyclization of species 65 via formation of a stable tertiary carbocation 67. We observed similar behavior for the cyclization of (o-styryl)ethynylbenzenes [15, 16]. Formation of 2,4-cyclohexadien-l-one is explicable according to 6-endo-dig cyclization of a ruthenium-stabilized ketene, vhich ultimately afforded the observed products [25]. [Pg.207]

Cleavage is favored at alkyl-substituted carbon atoms the more substituted, the more likely is cleavage. This is a consequence of the increased stability of a tertiary carbocation over a secondary, which in turn is more stable than a primary. [Pg.13]

As carbocations go, CH3+ is particularly unstable, and its existence as an intermediate in chemical reactions has never been demonstrated. Primary carbocations, although more stable than CH3+, are still too unstable to be involved as intermediates in chemical reactions. The threshold of stability is reached with secondary carbocations. Many reactions, including the reaction of secondary alcohols with hydrogen halides, are believed to involve secondary carbocations. The evidence in support of tertiary carbocation intermediates is stronger yet. [Pg.167]


See other pages where Tertiary carbocations, stability is mentioned: [Pg.122]    [Pg.122]    [Pg.490]    [Pg.476]    [Pg.490]    [Pg.804]    [Pg.974]    [Pg.986]    [Pg.1018]    [Pg.488]    [Pg.111]    [Pg.233]    [Pg.552]    [Pg.111]    [Pg.285]    [Pg.301]    [Pg.639]    [Pg.647]    [Pg.377]    [Pg.34]    [Pg.64]    [Pg.270]    [Pg.739]    [Pg.780]    [Pg.1073]    [Pg.273]    [Pg.162]   
See also in sourсe #XX -- [ Pg.1439 ]




SEARCH



Carbocation stability

Carbocation stabilization

Carbocations stability

Carbocations stabilization

Carbocations stabilized

Tertiary carbocation

Tertiary carbocations

© 2024 chempedia.info