Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermogravimetric analysis techniques

A related technique, thermogravimetric analysis (TGA), must be introduced at this point. In using TGA, the weight of the sample is recorded continuously as the temperature is raised. Volatilization, dehydration, oxidation, and other chemical reactions can easily be recorded, but the simple transitions are missed, as no weight changes occur. [Pg.369]

The main objective of the work described here was to study the effect, of removing the polymer on the porosity and permeability of the MDF cements. This was assessed using the techniques of mercury porosimetry and methane gas permeability. In addition to these techniques thermogravimetric analysis was used to follow the decomposition of the polymer and loss of water from the materials during heat-treatment. Gas adsorption measurements were also used to study the changes in the microstructure caused by the decomposition of the polymer. [Pg.669]

The process known as transimidization has been employed to functionalize polyimide oligomers, which were subsequentiy used to produce polyimide—titania hybrids (59). This technique resulted in the successhil synthesis of transparent hybrids composed of 18, 37, and 54% titania. The effect of metal alkoxide quantity, as well as the oligomer molecular weight and cure temperature, were evaluated using differential scanning calorimetry (dsc), thermogravimetric analysis (tga) and saxs. [Pg.330]

The definition of polymer thermal stabiUty is not simple owing to the number of measurement techniques, desired properties, and factors that affect each (time, heating rate, atmosphere, etc). The easiest evaluation of thermal stabiUty is by the temperature at which a certain weight loss occurs as observed by thermogravimetric analysis (tga). Early work assigned a 7% loss as the point of stabiUty more recentiy a 10% value or the extrapolated break in the tga curve has been used. A more reaUstic view is to compare weight loss vs time at constant temperature, and better yet is to evaluate property retention time at temperature one set of criteria has been 177°C for 30,000 h, or 240°C for 1000 h, or 538°C for 1 h, or 816°C for 5 min (1). [Pg.530]

Mixtures can be identified with the help of computer software that subtracts the spectra of pure compounds from that of the sample. For complex mixtures, fractionation may be needed as part of the analysis. Commercial instmments are available that combine ftir, as a detector, with a separation technique such as gas chromatography (gc), high performance Hquid chromatography (hplc), or supercritical fluid chromatography (96,97). Instmments such as gc/ftir are often termed hyphenated instmments (98). Pyrolyzer (99) and thermogravimetric analysis (tga) instmmentation can also be combined with ftir for monitoring pyrolysis and oxidation processes (100) (see Analytical methods, hyphenated instruments). [Pg.315]

Thermogravimetric analysis has also been used in conjunction with other techniques, such as differential thermal analysis (DTA), gas chromatography, and mass spectrometry, for the study and characterisation of complex materials such as clays, soils and polymers.35... [Pg.433]

First-order phase transitions can be detected by various thermoanalytical techniques, such as DSC, thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) [31]. Phase transitions leading to visual changes can be detected by optical methods such as microscopy [3], Solid-solid transitions involving a change in the crystal structure can be detected by X-ray diffraction [32] or infrared spectroscopy [33], A combination of these techniques is usually employed to study the phase transitions in organic solids such as drugs. [Pg.600]

When heated, many solids evolve a gas. For example, most carbonates lose carbon dioxide when heated. Because there is a mass loss, it is possible to determine the extent of the reaction by following the mass of the sample. The technique of thermogravimetric analysis involves heating the sample in a pan surrounded by a furnace. The sample pan is suspended from a microbalance so its mass can be monitored continuously as the temperature is raised (usually as a linear function of time). A recorder provides a graph showing the mass as a function of temperature. From the mass loss, it is often possible to establish the stoichiometry of the reaction. Because the extent of the reaction can be followed, kinetic analysis of the data can be performed. Because mass is the property measured, TGA is useful for... [Pg.266]

Thermogravimetric analysis (TGA) measures cellulose pyrolytic mass loss rates and activation parameters. The technique is relatively simple, straightforward and fast, but it does have disadvantages. One disadvantage is that determination of the kinetic rate constants from TGA data is dependent on the interpretation/analysis technique used. Another disadvantage of TGA is that the rate of mass loss is probably not equivalent to the cellulose pyrolysis rate. [Pg.335]

Thermogravimetric analysis (TGA) has often been used to determine pyrolysis rates and activation energies (Ea). The technique is relatively fast, simple and convenient, and many experimental variables can be quickly examined. However for cellulose, as with most polymers, the kinetics of mass loss can be extremely complex (8 ) and isothermal experiments are often needed to separate and identify temperature effects (9. Also, the rate of mass loss should not be assumed to be related to the pyrolysis kinetic rate ( 6 ) since multiple competing reactions which result in different mass losses occur. Finally, kinetic rate values obtained from TGA can be dependent on the technique used to analyze the data. [Pg.336]

Differential thermal analysis (DTA) is a technique in which the temperature difference between the sample tested and a reference material is measured while both are subjected to the controlled temperature program. Differential scanning calorimetry (DSC) is a technique in which the heat flow difference between the sample and reference material is monitored while both are subjected to the controlled temperature program. Thermogravimetric analysis (TGA) is a technique in which the weight of a sample is monitored during the controlled temperature program. [Pg.424]

In Thermogravimetric analysis a sample of material is heated at a fixed rate whilst the mass of the sample is continuously recorded. This technique identifies de-hydration, de-solvation and decomposition. [Pg.50]

Major instrumentation involved with the generation of thermal property behavior of materials includes thermogravimetric analysis (TG, TGA), DSC, differential thermal analysis (DTA), torsional braid analysis (TBA), thermomechanical analysis (TMA), thermogravimetric-mass spectrometry (TG-MS) analysis, and pyrolysis gas chromatography (PGQ. Most of these analysis techniques measure the polymer response as a function of time, atmosphere, and temperature. [Pg.437]

The section Analysis starts with elemental composition of the compound. Thus the composition of any compound can be determined from its elemental analysis, particularly the metal content. For practically all metal salts, atomic absorption and emission spectrophotometric methods are favored in this text for measuring metal content. Also, some other instrumental techniques such as x-ray fluorescence, x-ray diffraction, and neutron activation analyses are suggested. Many refractory substances and also a number of salts can be characterized nondestructively by x-ray methods. Anions can be measured in aqueous solutions by ion chromatography, ion-selective electrodes, titration, and colorimetric reactions. Water of crystallization can be measured by simple gravimetry or thermogravimetric analysis. [Pg.1092]

The fresh and spent catalysts were characterized with the physisorption/chemisorption instrument Sorptometer 1900 (Carlo Erba instruments) in order to detect loss of surface area and pore volume. The specific surface area was calculated based on Dubinin-Radushkevich equation. Furthermore thermogravimetric analysis (TGA) of the fresh and used catalysts were performed with a Mettler Toledo TGA/SDTA 851e instrument in synthetic air. The mean particle size and the metal dispersion was measured with a Malvern 2600 particle size analyzer and Autochem 2910 apparatus (by a CO chemisorption technique), respectively. [Pg.417]

Powdering, or grinding, of samples is a simple preparation method required in a number of spectrometric and spectroscopic techniques, such as x-ray diffraction (XRD), nuclear magnetic resonance (NMR), differential thermal analysis (DTA), thermogravimetric analysis (TG), or ATR-FTIR spectroscopy. Control of the particle size during grinding must be taken into account in attempting to obtain reliable results. [Pg.10]

Other thermal techniques are Thermogravimetric Analysis (TGA) [55,68], High Pressure Calorimeter (HPC) [1], Thermomechanical Analysis (TMA) [1,141], and Differential (or Dynamic) Thermal Analysis (DTA) [74]. These are rarely used and will not be discussed here. [Pg.87]

By definition [26,27], thermogravimetric analysis is a technique in which the mass of a substance is measured as a function of time or temperature while the substance is subjected to a controlled temperature program. Because mass is a fundamental attribute of a material, any mass change is more likely to be associated with a chemical change, which may, in turn, reflect a compositional change. [Pg.108]


See other pages where Thermogravimetric analysis techniques is mentioned: [Pg.2965]    [Pg.21]    [Pg.90]    [Pg.291]    [Pg.81]    [Pg.2965]    [Pg.21]    [Pg.90]    [Pg.291]    [Pg.81]    [Pg.201]    [Pg.7]    [Pg.521]    [Pg.242]    [Pg.137]    [Pg.212]    [Pg.420]    [Pg.274]    [Pg.128]    [Pg.4]    [Pg.619]    [Pg.62]    [Pg.246]    [Pg.191]    [Pg.196]    [Pg.196]    [Pg.194]    [Pg.456]    [Pg.123]    [Pg.211]    [Pg.16]   


SEARCH



Analysis techniques

Applications of Hyphenated Thermogravimetric Analysis Techniques

Characterisation of Elastomers Using (Multi) Hyphenated Thermogravimetric Analysis Techniques

Hyphenated techniques thermogravimetric analysis

Thermal characterization techniques thermogravimetric analysis

Thermogravimetric analysis

© 2024 chempedia.info