Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Technetium chemical properties

As a general rule, elements in the second and third transition series have similar chemical properties. In contrast, the properties of the first member of the series are often different. This pattern of behavior is seen in Group 7 (VIIB). The properties of rhenium and technetium differ considerably from those of manganese. [Pg.163]

The isolation and identification of 4 radioactive elements in minute amounts took place at the turn of the century, and in each case the insight provided by the periodic classification into the predicted chemical properties of these elements proved invaluable. Marie Curie identified polonium in 1898 and, later in the same year working with Pierre Curie, isolated radium. Actinium followed in 1899 (A. Debierne) and the heaviest noble gas, radon, in 1900 (F. E. Dorn). Details will be found in later chapters which also recount the discoveries made in the present century of protactinium (O. Hahn and Lise Meitner, 1917), hafnium (D. Coster and G. von Hevesey, 1923), rhenium (W. Noddack, Ida Tacke and O. Berg, 1925), technetium (C. Perrier and E. Segre, 1937), francium (Marguerite Percy, 1939) and promethium (J. A. Marinsky, L. E. Glendenin and C. D. Coryell, 1945). [Pg.30]

The discovery of the elements 43 and 75 was reported by Noddack et al. in 1925, just seventy years ago. Although the presence of the element 75, rhenium, was confirmed later, the element 43, masurium, as they named it, could not be extracted from naturally occurring minerals. However, in the cyclotron-irradiated molybdenum deflector, Perrier and Segre found radioactivity ascribed to the element 43. This discovery in 1937 was established firmly on the basis of its chemical properties which were expected from the position between manganese and rhenium in the periodic table. However, ten years later in 1937, the new element was named technetium as the first artificially made element. [Pg.3]

The long-wavelength IR spectra of trigonal prismatic technetium clusters and a number of unusual physico-chemical properties of the clusters with ferrieinium cations [108] support the latter assumption. The discovered properties of the clusters with ferrieinium cations may be accounted for by the formation of the conductivity bands and, probably, hard-fermion bands in these compounds by the 5s(5p)-AO s of technetium atoms and 4s(4p)-AO s of the iron atoms. The formation of these bands may be supported by the following facts the ESR spectra of these compounds with geft close to that of a free electron temperature independent conductivity and an unusual temperature dependence of the Mossbauer and X-ray photoelectron spectra [108]. [Pg.245]

HOMO-LUMO. This may be supported by low Zeff of technetium atoms in tetragonal-prismatic clusters [103,127] and formation of compounds with fer-ricinium cations with some unusual physico-chemical properties, as is the case of trigonal-prismatic clusters [108,128]. [Pg.246]

Gerlit, J.B. Some chemical properties of Technetium. Peaceful uses of... [Pg.169]

Many compounds of technetium and rhenium are of analogous composition and of corresponding physical and chemical properties. Because of the very similar ionic radii, isotypic crystal structure formation of analogous compounds could often be observed. Technetium remarkably differs from manganese by the high stability of pertechnetate compared with permanganate. Moreover, divalent technetium does not exist as a hydrated ion but only as a stabilized complex. [Pg.114]

As the central member of the triad of metals in group 7, technetium (period 5) has similar physical and chemical properties as its partners manganese (period 4) above it and rhenium (period 6) below it. The sizes of their atomic radii do not vary greatly Mn = 127, Tc = 136, and Re = 137. Neither does their level of electronegativity vary significantly Mn = 1.5, Tc =... [Pg.130]

Most chemical properties of technetium are similar to those of rhenium. The metal exhibits several oxidation states, the most stable being the hep-tavalent, Tc +. The metal forms two oxides the black dioxide Tc02 and the heptoxide TC2O7. At ambient temperature in the presence of moisture, a thin layer of dioxide, Tc02, covers the metal surface. The metal burns in fluorine to form two fluorides, the penta- and hexafluorides, TcFs and TcFe. Binary compounds also are obtained with other nonmetaUic elements. It combines with sulfur and carbon at high temperatures forming technetium disulfide and carbide, TcS2 and TcC, respectively. [Pg.914]

Tracer studies of the chemical properties showed that astatine was soluble in organic solvents, could be reduced to the —1 state, and had at least two positive oxidation states. These studies were made on solutions of 10-11 to KL15 molar astatine (29). The similarity between astatine and iodine was found to be less close than that between technetium and rhenium or that between promethium and the other rare earths (30). [Pg.865]

The use of cobalt radiation treatments for cancerous tumors was described in Example 26-3. Several other nuclides are used as radioactive tracers in medicine. Radioisotopes of an element have the same chemical properties as stable isotopes of the same element, so they can be used to label the presence of an element in compounds. A radiation detector can be used to follow the path of the element throughout the body. Modern computer-based techniques allow construction of an image of the area of the body where the radioisotope is concentrated. Salt solutions containing "iNa can be injected into the bloodstream to follow the flow of blood and locate obstructions in the circulatory system. Thallium-201 tends to concentrate in healthy heart tissue, whereas technetium-99 concentrates in abnormal heart tissue. The two can be used together to survey damage from heart disease. [Pg.1019]

The knowledge of the chemical properties of technetium has grown over the years, as indicated hy review articles and books (Dewanjee 1990 Lever 1995 Nowotnik 1994 Peacock 1966 Schwochau 1983 Steigman and Eckelman 1992). Of particular interest are the Proceedings of the International Symposium on Technetium in Chemistry and Nuclear Medicine, presenting new developments in complex chemistry of technetium and rhenium, with state-of-the-art lectures, listed at the end of this chapter under Further Reading . [Pg.8]

Technetium-99m ( Tc) is widely used in radiopharmaceutical preparations due to its excellent physical and chemical properties. In fact, more than 80% of all radiopharmaceuticals used in diagnostic nuclear medicine are based on this short-lived radionuclide, which is obtained by elution of a Mo/ Tc generator system that is available in any radiopharmacy and nuclear medicine facility. [Pg.95]

Anders (1960) summarized the chemical properties of technetium in his monograph on... [Pg.698]


See other pages where Technetium chemical properties is mentioned: [Pg.477]    [Pg.127]    [Pg.152]    [Pg.155]    [Pg.210]    [Pg.225]    [Pg.275]    [Pg.277]    [Pg.227]    [Pg.42]    [Pg.128]    [Pg.863]    [Pg.475]    [Pg.140]    [Pg.33]    [Pg.104]    [Pg.465]    [Pg.76]    [Pg.4]    [Pg.12]    [Pg.43]    [Pg.125]    [Pg.150]    [Pg.153]    [Pg.209]    [Pg.224]    [Pg.275]    [Pg.277]    [Pg.4]    [Pg.692]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Technetium

Technetium properties

© 2024 chempedia.info