Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tactic styrene copolymers

This chapter discusses the dynamic mechanical properties of polystyrene, styrene copolymers, rubber-modified polystyrene and rubber-modified styrene copolymers. In polystyrene, the experimental relaxation spectrum and its probable molecular origins are reviewed further the effects on the relaxations caused by polymer structure (e.g. tacticity, molecular weight, substituents and crosslinking) and additives (e.g. plasticizers, antioxidants, UV stabilizers, flame retardants and colorants) are assessed. The main relaxation behaviour of styrene copolymers is presented and some of the effects of random copolymerization on secondary mechanical relaxation processes are illustrated on styrene-co-acrylonitrile and styrene-co-methacrylic acid. Finally, in rubber-modified polystyrene and styrene copolymers, it is shown how dynamic mechanical spectroscopy can help in the characterization of rubber phase morphology through the analysis of its main relaxation loss peak. [Pg.666]

If there are more than two components in a mixture (as in a blend of a homopolymer with a copolymer), binary interaction parameters can be combined into a composite % parameter to describe the overall behavior of the system. For example, Choi and Jo [11] showed how the effects of copolymer sequence distribution in blends of polyethylene oxide) with poly(styrene-co-acrylic acid) can be described by an atomistic simulation approach to estimate the binary intermolecular interaction energies which are combined into a total interaction parameter for the blend. Their paper [11] also provides a list of the many preceding publications attempting to address the effects of copolymer composition, tacticity, and copolymer sequence distribution on polymer blend miscibility. In addition to the advances in computational hardware and software which have made atomistic simulations much faster and hence more accessible, work in recent years has significantly improved the accuracy of the force fields [12] used in such simulations. [Pg.178]

In figure 1 we present the experimental and calculated mK values of the copolymer poly(styrene-co-p-bromostyrene). From this study (3) we were able to show unequivocally that the tacticity of this polystyrene sample is pr — 0.55, where pr is the probability of racemic dyad replication. [Pg.237]

Poly(styrene)-poly(acrylate) colloidal suspensions, 7 275 Polystyrene/polyfmethyl methacrylate) commercial block copolymers, 7 648t Polystyrenes. See also Polystyrene (PS) commercial, 23 364 general-purpose, 23 364 specialty, 23 364-366 stabilized, 23 366 tactic, 23 365... [Pg.744]

Experimental values are presented of the molar Kerr constants /x and dipole moments squared, lx, for the copolymers poly(styrene-co-p-bromostyrene), where x is the degree of polymerization. Some results are also presented for poly(styrene-co-p-chlorostyrene) and related polymers. The RIS model of Yoon etal. (Yoon, D. Y. Sundararajan, P. R. Flory, P. J. Macromolecules 1975, 8, 776) is used to calculate mK/x and /x values as a function of tacticity and composition. The statistical weight matrices are identical with those used by Saiz etal. (Saiz, E. Mark, J. E. Flory, P. J. Macromolecules 1977, 10, 967), with the following parameters h = 0.8 exp 397/RT), co = o = 1.3 exp - 1987/RT) and m,= 1.B exp -(2186/RT), where T = 298 K is the temperature. [Pg.365]

Polyethylene and polystyrene are two of the most commercially important and ubiquitous polymers, primarily because of their commercial value. Since the early days of polymer research there has been considerable interest to produce copolymers from ethylene (E) and styrene (S) because of both academic and business interests. Depending on the nature and type of polymerization chemistry, a variety of different molecular architectures can be produced. In addition to the different monomer distributions (random, alternating or blocky nature), there are possibilities for chain branching and tacticity in the chain microstructure. These molecular architectures have a profound influence on the melt and solid-state morphology and hence on the processability and material properties of the copolymers. [Pg.605]


See other pages where Tactic styrene copolymers is mentioned: [Pg.363]    [Pg.387]    [Pg.363]    [Pg.387]    [Pg.30]    [Pg.116]    [Pg.204]    [Pg.1913]    [Pg.363]    [Pg.365]    [Pg.369]    [Pg.371]    [Pg.373]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.387]    [Pg.389]    [Pg.391]    [Pg.393]    [Pg.395]    [Pg.397]    [Pg.686]    [Pg.317]    [Pg.914]    [Pg.110]    [Pg.107]    [Pg.126]    [Pg.123]    [Pg.709]    [Pg.27]    [Pg.709]    [Pg.51]    [Pg.452]    [Pg.93]    [Pg.265]    [Pg.184]    [Pg.3214]    [Pg.418]    [Pg.166]    [Pg.170]   


SEARCH



Copolymerization tactic styrene copolymers

Styrene-copolymers

Tactic styrene copolymers styrenic monomers

Tactical

Tacticities

Tacticity

© 2024 chempedia.info