Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis chirally selective organic

Several methods have been presented for the selective hydrogenation of aromatic rings. As industrial products become more complex, however, further methods are needed for the selective organic transformations required in the production of chemical intermediates and fine chemicals. Of special interest are sulfur-tolerant catalysts and catalysts for the synthesis of chiral complexes. Future research should focus on either of these areas. Much is expected from novel catalysts obtained by immobilizing homogeneous complexes. [Pg.412]

Examples of this kind of enantiomorphic or chiral selectivity are now being found in organic synthesis. Asymmetric synthesis, for example, has been demonstrated with stereo-controlled Michael addition in the synthesis of beta-lactams using chiral catalysts, where an acyl ligand such as acetyl is bound to cyclo-pentadiene carbonyl triphenylphosphine. Essentially complete enantiomorphic selectivity has been achieved in this Michael addition synthesis. Another case is enantio-morhic ketone reduction in ethylbenzene reduction in the ethylation of benzaldehyde. Using chiral catalysts, 97% selectivity has been achieved. Closely related research involves the making of catalytic antibodies and hybrid enzymes. ... [Pg.13]

Combination of super B rousted acid with simple Bronsted acid or Lewis acid would be a new system for acid catalysis in organic synthesis. The example of super BLA would be an interesting tool for selective organic transformations. We have already shown excellent examples in Scheme 1.3 using the Tf2NH-chiral Lewis acid combined system. Scheme 1.36 exemplifies some additional recent reactions based on pentafluorophenyl bis (triflyl)methane and chiral Lewis acid catalyst [38]. [Pg.31]

In a catalytic asymmetric reaction, a small amount of an enantio-merically pure catalyst, either an enzyme or a synthetic, soluble transition metal complex, is used to produce large quantities of an optically active compound from a precursor that may be chiral or achiral. In recent years, synthetic chemists have developed numerous catalytic asymmetric reaction processes that transform prochiral substrates into chiral products with impressive margins of enantio-selectivity, feats that were once the exclusive domain of enzymes.56 These developments have had an enormous impact on academic and industrial organic synthesis. In the pharmaceutical industry, where there is a great emphasis on the production of enantiomeri-cally pure compounds, effective catalytic asymmetric reactions are particularly valuable because one molecule of an enantiomerically pure catalyst can, in principle, direct the stereoselective formation of millions of chiral product molecules. Such reactions are thus highly productive and economical, and, when applicable, they make the wasteful practice of racemate resolution obsolete. [Pg.344]

In many cases, the racemization of a substrate required for DKR is difficult As an example, the production of optically pure cc-amino acids, which are used as intermediates for pharmaceuticals, cosmetics, and as chiral synfhons in organic chemistry [31], may be discussed. One of the important methods of the synthesis of amino acids is the hydrolysis of the appropriate hydantoins. Racemic 5-substituted hydantoins 15 are easily available from aldehydes using a commonly known synthetic procedure (Scheme 5.10) [32]. In the next step, they are enantioselectively hydrolyzed by d- or L-specific hydantoinase and the resulting N-carbamoyl amino acids 16 are hydrolyzed to optically pure a-amino acid 17 by other enzymes, namely, L- or D-specific carbamoylase. This process was introduced in the 1970s for the production of L-amino acids 17 [33]. For many substrates, the racemization process is too slow and in order to increase its rate enzymes called racemases are used. In processes the three enzymes, racemase, hydantoinase, and carbamoylase, can be used simultaneously this enables the production of a-amino acids without isolation of intermediates and increases the yield and productivity. Unfortunately, the commercial application of this process is limited because it is based on L-selective hydantoin-hydrolyzing enzymes [34, 35]. For production of D-amino acid the enzymes of opposite stereoselectivity are required. A recent study indicates that the inversion of enantioselectivity of hydantoinase, the key enzyme in the... [Pg.103]

Asymmetric hydrosilylation can be extended to 1,3-diynes for the synthesis of optically active allenes, which are of great importance in organic synthesis, and few synthetic methods are known for their asymmetric synthesis with chiral catalysts. Catalytic asymmetric hydrosilylation of butadiynes provides a possible way to optically allenes, though the selectivity and scope of this reaction are relatively low. A chiral rhodium complex coordinated with (2S,4S)-PPM turned out to be the best catalyst for the asymmetric hydrosilylation of butadiyne to give an allene of 22% ee (Scheme 3-20) [59]. [Pg.86]

Various kinds of chiral acyclic nitrones have been devised, and they have been used extensively in 1,3-dipolar cycloaddition reactions, which are documented in recent reviews.63 Typical chiral acyclic nitrones that have been used in asymmetric cycloadditions are illustrated in Scheme 8.15. Several recent applications of these chiral nitrones to organic synthesis are presented here. For example, the addition of the sodium enolate of methyl acetate to IV-benzyl nitrone derived from D-glyceraldehyde affords the 3-substituted isoxazolin-5-one with a high syn selectivity. Further elaboration leads to the preparation of the isoxazolidine nucleoside analog in enantiomerically pure form (Eq. 8.52).78... [Pg.254]

The Sharpless epoxidation is a popular laboratory process that is both enantioselective and catalytic in nature. Not only does it employ inexpensive reagents and involve various important substrates (allylic alcohols) and products (epoxides) in organic synthesis, but it also demonstrates unusually wide applicability because of its insensitivity to many aspects of substrate structure. Selection of the proper chirality in the starting tartrate esters and proper geometry of the allylic alcohols allows one to establish both the chirality and relative configuration of the product (Fig. 4-1). [Pg.196]


See other pages where Synthesis chirally selective organic is mentioned: [Pg.3]    [Pg.90]    [Pg.339]    [Pg.1]    [Pg.631]    [Pg.369]    [Pg.705]    [Pg.160]    [Pg.524]    [Pg.1348]    [Pg.3]    [Pg.136]    [Pg.42]    [Pg.291]    [Pg.650]    [Pg.593]    [Pg.25]    [Pg.25]    [Pg.345]    [Pg.367]    [Pg.159]    [Pg.434]    [Pg.232]    [Pg.201]    [Pg.334]    [Pg.248]    [Pg.159]    [Pg.75]    [Pg.181]    [Pg.2]    [Pg.156]    [Pg.209]    [Pg.270]    [Pg.395]    [Pg.77]    [Pg.296]    [Pg.260]    [Pg.398]    [Pg.62]    [Pg.1343]    [Pg.53]    [Pg.518]    [Pg.94]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Chiral Organic Synthesis

Chiral selection

Chiral synthesis

Organic selectivity

Selected Organic Syntheses

Selected Syntheses

Selective organic synthesis

Synthesis selectivity

© 2024 chempedia.info