Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synkinon pores

An electron donor or acceptor site is usually needed in organic synthons for covalent synthesis. The covalent connection of both leads to a new molecule in an essentially irreversible synthetic reaction. Organic synkinons for non-covalent synkinesis usually contain a hydrophilic and a hydrophobic part and/or proton donor or acceptor sites. Non-covalent connection of such amphiphiles leads to a molecular assembly in a reversible synkinetic reaction. Amphiphiles are not only surface active molecules ( surfactant, detergent ), but much more important, they create surfaces. This becomes particularly evident in microemulsions and in suspensions of vesicles and micellar fibres, but is also true in nanoholes and pores, on monolayer surfaces and for many other supramolecular structures. [Pg.4]

There are, for example synkinons for the synkinesis of micelles, vesicles, pores, fibres and planar mono- or multilayers. A given synkinon can also be applied for another synkinetic target if the conditions are changed or if the synkinon is chemically modified. The most simple example is stearic acid. At pH 9, it is relatively well-soluble in water and forms spherical micelles. If provided with a hydrogen bonding chiral centre in the hydrophobic chains (12-hydroxystearic acid), it does not only form spherical micelles in water but also assembles into helical fibres in toluene. At pH 4, stearic acid becomes water-insoluble but does not immediately crystallize out spherical vesicles form. A second type of synkinon, which produces perfectly unsymmetrical vesicle membranes, consists of bolaamphiphiles with two dififerent head groups on both ends of a hydrophobic core. Such bolaamphiphiles are also particularly suitable for the stepwise construction of planar multilayered assemblies. [Pg.4]

In this chapter we introduce compounds which have been successfully applied in the construction of supramolecular assemblies. Only the amphiphiles which have been prepared in sufficient quantities have been admitted milligram quantities being considered unacceptable as starting materials for the preparation, analysis and application of assemblies. Experience proves that complicated dyes, pore builders, receptors etc. never reappear in the literature after their syntheses and spectroscopic properties have been reported. On the other hand, such easily attainable synkinons and surfactants around the ten gram scale need not, of course, be too simple. On the contrary, they may contain all the components of the chiral pool, i.e. amino acids, carbohydrates, steroids etc., as well as all commercial dyes of interest such as protoporphyrin, phthalo-cyanines, carotenes, viologen and quinones. [Pg.7]

The other chapters then lead from the simple to the more complex molecular assemblies. Syntheses of simple synkinons are described at first. Micelles made of 10-100 molecules follow in chapter three. It is attempted to show how structurally ill-defined assemblies can be most useful to isolate single and pairs of molecules and that micelles may produce very dynamic reaction systems. A short introduction to covalent micelles, which actually are out of the scope of this book, as well as the discussion of rigid amphiphiles indicate where molecular assembly chemistry should aim at, namely the synkinesis of solid spherical assemblies. Chapter four dealing with vesicles concentrates on asymmetric monolayer membranes and the perforation of membranes with pores and transport systems. The regioselective dissolution of porphyrins and steroids, and some polymerization and photo reactions within vesicle membranes are also described in order to characterize dynamic assemblies. [Pg.239]


See other pages where Synkinon pores is mentioned: [Pg.3]    [Pg.4]    [Pg.463]   
See also in sourсe #XX -- [ Pg.75 , Pg.80 , Pg.81 , Pg.82 , Pg.83 , Pg.165 , Pg.166 , Pg.167 , Pg.168 , Pg.169 ]




SEARCH



Synkinon

© 2024 chempedia.info