Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium Suzuki coupling

Keywords iodobenzene, alkylboronic acid, Suzuki coupling, palladium-doped... [Pg.77]

Palladium-mediated catalysis has only been exploited relatively recently in the synthesis of substituted PPV derivatives. The use of aryl dibromides as monomers is particularly useful as it allows the synthesis of PPVs substituted with alkyl rather than alkoxy sidechains. The Suzuki [53, 54], Heck [55], and Stille [56] reactions have been used in the synthesis of new PPV derivatives, but attaining high molecular weight PPV derivatives by these methodologies has proved problematic. A phenyl-subslilutcd PPV material PPPV 31 was synthesized by a Suzuki coupling (Scheme 1-10) of dibromoethene and fo/.v-boronic acid 30. Its absorption (2ni ix=385 nm) and emission (2max=475 nm) maxima were strongly... [Pg.18]

The postulated steps that constitute the Suzuki coupling process are shown in Scheme 25. After oxidative addition of the organic halide to the palladium(o) catalyst, it is presumed that a metathetical displacement of the halide substituent in the palladium(ii) complex A by ethoxide ion (or hydroxide ion) takes place to give an alkoxo-palladium(ff) complex B. The latter complex then reacts with the alkenylborane, generating the diorganopalladium complex C. Finally, reductive elimination of C furnishes the cross-coupling product (D) and regenerates the palladium(o) catalyst. [Pg.589]

The total synthesis of palytoxin (1) is a landmark scientific achievement. It not only extended the frontiers of target-oriented synthesis in terms of the size and complexity of the molecules, but also led to new discoveries and developments in the areas of synthetic methodology and conformational analysis. Among the most useful synthetic developments to emerge from this synthesis include the refinement of the NiCh/CrC -mediated coupling reaction between iodoolefins and aldehydes, the improvements and modifications of Suzuki s palladium-catalyzed diene synthesis, and the synthesis of A-acyl vinylogous ureas. [Pg.729]

At about die same time, die application of the Suzuki coupling, the crosscoupling of boronic acids widi aryl-alkenyl halides in die presence of a base and a catalytic amount of palladium catalyst (Scheme 9.12),16 for step-growth polymerization also appeared. Schliiter et al. reported die synthesis of soluble poly(para-phenylene)s by using the Suzuki coupling condition in 1989 (Scheme 9.13).17 Because aryl-alkenyl boronic acids are readily available and moisture stable, the Suzuki coupling became one of die most commonly used mediods for die synthesis of a variety of polymers.18... [Pg.470]

The Suzuki-Miyaura synthesis is one of the most commonly used methods for the formation of carbon-to-carbon bonds [7]. As a palladium catalyst typically tetrakis(triphenylphosphine)palladium(0) has been used, giving yields of44—78%. Recently, Suzuki coupling between aryl halides and phenylboronic acid with efficient catalysis by palladacycles was reported to give yields of 83%. [Pg.479]

A closely related reaction that is currently receiving much attention is the palladium-catalysed Suzuki coupling of arylboronic acids with aryl halides (Fu and Littke, 1998). For example, this technology has recently been applied by Clariant workers for the production of o-tolyl-benzonitrile (Eqn. (13)), an intermediate to a series of so-called angiotensin-II antagonists, a new class of antihypertensive drugs (Bernhagen, 1998). [Pg.42]

Under all the conditions studied, addition of bare Si02-SH to Heck or Suzuki coupling reactions using a variety of bases, aryl halides and solvents resulted in complete cessation of the catalytic activity (35). These results suggest that catalysis with this precatalyst is also associated with labile palladium species that... [Pg.197]

Palladium complexes of inexpensive, easily synthesized bis(phosphinite) PCP -pincer ligands show good activity in the Suzuki coupling of deactivated and sterically hindered aryl bromides.256... [Pg.575]

A parallel synthesis of a library of 2-aryl-6-chlorobenzothiazoles 112 involves a regioselective palladium-catalyzed Suzuki coupling reaction of 2,6-dichlorobenzothiazole 111 with arylboronic acids (1.1 equiv) under microwave irradiation <06TL3091>. When excess phenylboronic acid is used, Pd(PPh3)4 still provides 2-phenyl-6-chlorobenzothiazole exclusively, while 2-dicyclohexylphosphinobiphenyl 113 generates 2,6-diphenylbenzothiazole as the major product. [Pg.252]

An even simpler protocol for performing nucleophilic substitutions (aminations) and Suzuki reactions in one pot was reported by the Organ group for the generation of a 42-member library of styrene-based nicotinic acetylcholine receptor (nAChR) antagonists (Scheme 6.21) [49]. After considerable experimentation, the authors found that simultaneous nucleophilic displacement and Suzuki coupling could be carried out very effectively by charging the microwave process vessel with the palladium catalyst (0.5 mol% palladium-on-charcoal), the boronic acid [R1B(OH)2], the... [Pg.120]

Scheme 6.28 Suzuki couplings involving immobilized palladium catalysts. Scheme 6.28 Suzuki couplings involving immobilized palladium catalysts.
Several microwave-assisted protocols for soluble polymer-supported syntheses have been described. Among the first examples of so-called liquid-phase synthesis were aqueous Suzuki couplings. Schotten and coworkers presented the use of polyethylene glycol (PEG)-bound aryl halides and sulfonates in these palladium-catalyzed cross-couplings [70]. The authors demonstrated that no additional phase-transfer catalyst (PTC) is needed when the PEG-bound electrophiles are coupled with appropriate aryl boronic acids. The polymer-bound substrates were coupled with 1.2 equivalents of the boronic acids in water under short-term microwave irradiation in sealed vessels in a domestic microwave oven (Scheme 7.62). Work-up involved precipitation of the polymer-bound biaryl from a suitable organic solvent with diethyl ether. Water and insoluble impurities need to be removed prior to precipitation in order to achieve high recoveries of the products. [Pg.338]

In a more recent study, Wang and coworkers have discussed microwave-assisted Suzuki couplings employing a reusable polymer-supported palladium complex [141]. The supported catalyst was prepared from commercial Merrifield polystyrene resin under ultrasound Bonification. In a typical procedure for biaryl synthesis, 1 mmol of the requisite aryl bromide together with 1.1 equivalents of the phenyl-boronic acid, 2.5 equivalents of potassium carbonate, and 10 mg of the polystyrene-... [Pg.376]

Scheme 7.119 Suzuki coupling utilizing a polymer-supported palladium catalyst. Scheme 7.119 Suzuki coupling utilizing a polymer-supported palladium catalyst.
The group of Ley has reported on the use of palladium-doped perovskites as recyclable and reusable catalysts for Suzuki couplings [151]. Microwave-mediated cross-couplings of phenylboronic acid with aryl halides were achieved within 1 h by utilizing the supported catalyst (0.25 mol% palladium) in aqueous 2-propanol (Scheme 7.127). The addition of water was crucial as attempted transformations in non-aqueous mixtures did not proceed. [Pg.383]

Scheme 7.127 Suzuki couplings utilizing palladium-doped perovskite as catalyst. Scheme 7.127 Suzuki couplings utilizing palladium-doped perovskite as catalyst.

See other pages where Palladium Suzuki coupling is mentioned: [Pg.223]    [Pg.223]    [Pg.152]    [Pg.12]    [Pg.12]    [Pg.587]    [Pg.591]    [Pg.719]    [Pg.724]    [Pg.167]    [Pg.149]    [Pg.197]    [Pg.233]    [Pg.186]    [Pg.187]    [Pg.514]    [Pg.170]    [Pg.119]    [Pg.252]    [Pg.318]    [Pg.319]    [Pg.115]    [Pg.115]    [Pg.116]    [Pg.119]    [Pg.120]    [Pg.124]    [Pg.126]    [Pg.377]   


SEARCH



Palladium Suzuki-Miyaura cross-coupling

Palladium catalyst for Suzuki coupling

Palladium catalysts Suzuki coupling

Palladium catalysts Suzuki-Miyaura coupling

Palladium coupling

Palladium-catalyzed Suzuki cross-coupling

Palladium-catalyzed Suzuki-Miyaura Cross-coupling Reactions of Functionalized Aryl and Heteroaryl Boronic Esters

Palladium-catalyzed coupling Suzuki reaction

Suzuki coupling

Suzuki coupling 347 tetrakis palladium

Suzuki coupling palladium acetate

Suzuki coupling palladium carbene complexes

Suzuki coupling palladium chloride

Suzuki coupling palladium/alumina

Suzuki coupling palladium/carbon

Suzuki coupling, palladium catalysis

Suzuki coupling, palladium-catalyzed

Suzuki couplings with palladium carbenes

Suzuki reaction intramolecular palladium coupling

Suzuki-Miyaura coupling with palladium carbenes

© 2024 chempedia.info