Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant adsorption Szyszkowski isotherms

When water soluble surfactants adsorb at the interface between a liquid hydrocarbon and water, the trends in adsorption are very similar to those established for the air - solution interface (see Chapter II). The Traube rule remains valid, and the dependence of the surface tension on concentration can be described by Szyszkowski s equation (11.18). Moreover, at identical surfactant concentrations, the absolute values by which the surface tension is lowered at water - air and water - hydrocarbon interfaces are not that different. The surface tension isotherms for these interfaces are parallel to each other (Fig. III-6). That is due to the fact that the work of adsorption per CH2 group, given by eq. (II. 14), is determined mostly by the change in the standard part of the chemical potential of the solution bulk, q0. Similar to the air-water interface, the energy of surfactant adsorption from an aqueous solution at an... [Pg.178]

The von Szyszkowski isotherm establishes the connection between the change in surface tension y and the surfactant bulk concentration. Stauff (1957) has evaluated the parameters of this semi-empirical adsorption isotherm and has shown that it is in agreement with interfacial thermodynamics. Frumkin s isotherm has often recently been used to describe the adsorption of different types of surfactants, for example by Lunkenheimer (1983), Miller (1986), Wiisteneck et al. (1993), and others. One of the main aims of this book is to show that in the many... [Pg.8]

The deviations from the Szyszkowski-Langmuir adsorption theory have led to the proposal of a munber of models for the equihbrium adsorption of surfactants at the gas-Uquid interface. The aim of this paper is to critically analyze the theories and assess their applicabihty to the adsorption of both ionic and nonionic surfactants at the gas-hquid interface. The thermodynamic approach of Butler [14] and the Lucassen-Reynders dividing surface [15] will be used to describe the adsorption layer state and adsorption isotherm as a function of partial molecular area for adsorbed nonionic surfactants. The traditional approach with the Gibbs dividing surface and Gibbs adsorption isotherm, and the Gouy-Chapman electrical double layer electrostatics will be used to describe the adsorption of ionic surfactants and ionic-nonionic surfactant mixtures. The fimdamental modeling of the adsorption processes and the molecular interactions in the adsorption layers will be developed to predict the parameters of the proposed models and improve the adsorption models for ionic surfactants. Finally, experimental data for surface tension will be used to validate the proposed adsorption models. [Pg.27]

The comparison of the empirical Szyszkowski equation (II. 18) with the Gibbs equation (II.5) indicates that Langmuir adsorption isotherm (11.22) is well suited also for the description of adsorption at the air - surfactant solution interface. It is interesting to point out that at the gas - solid interface, for which eq. (11.22) was originally derived various deviations from Langmuirian behavior are often observed. [Pg.104]

Many adsorption experiments on long chain fatty acids and other amphiphiles at the liquid/air interface and the close agreement with the von Szyszkowski equation is logically one proof of the validity of Langmuir s adsorption isotherm for the interpretation of y - log c -plots of typical surfactants in aqueous solutions (cf. Appendix 5D). This evidence is also justification for use of the kinetic adsorption/desorption mechanism based on the Langmuir model for interpreting the kinetics and dynamics of surface active molecules. [Pg.48]

The thermodynamics and dynamics of interfacial layers have gained large interest in interfacial research. An accurate description of the thermodynamics of adsorption layers at liquid interfaces is the vital prerequisite for a quantitative understandings of the equilibrium or any non-equilibrium processes going on at the surface of liquids or at the interface between two liquids. The thermodynamic analysis of adsorption layers at liquid/fluid interfaces can provide the equation of state which expresses the surface pressure as the function of surface layer composition, and the adsorption isotherm, which determines the dependence of the adsorption of each dissolved component on their bulk concentrations. From these equations, the surface tension (pressure) isotherm can also be calculated and compared with experimental data. The description of experimental data by the Langmuir adsorption isotherm or the corresponding von Szyszkowski surface tension equation often shows significant deviations. These equations can be derived for a surface layer model where the molecules of the surfactant and the solvent from which the molecules adsorb obey two conditions ... [Pg.99]

The above analysis of the viscoelastic behaviour for adsorption layers of a reorientable surfactant leads to important conclusions. It is seen that the most important prerequisite for a realistic prediction of the elastic properties is the adequacy of the theoretical model used to describe the equilibrium adsorption of the surfactant. For example, when we use the von Szyszkowski-Langmuir equation instead of the reorientation model to describe the interfacial tension isotherm, this rather minor difference drastically affects the elasticity modulus of the surface layer. The elasticity modulus, therefore, can be regarded to as a much more sensitive parameter to find the correct equation of state and adsorption isotherm, rather than the surface or interfacial tension. Therefore the study of viscoelastic properties can give much more insight into the nature of subtle phenomena, like reorientation, aggregation etc. [Pg.136]

When the formation of large aggregates of an insoluble surfactant is stimulated by the adsorption of a soluble surfactant, the von Szyszkowski-Langmuir equation of state and adsorption isotherm for the soluble surfaetant read [157]... [Pg.171]


See other pages where Surfactant adsorption Szyszkowski isotherms is mentioned: [Pg.133]    [Pg.26]    [Pg.27]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Adsorption isotherms surfactants

Surfactant adsorption

© 2024 chempedia.info