Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfaces diatomic

Hutson J M and Howard B J 1980 Spectroscopic properties and potential surfaces for atom-diatom van der Waals molecules Mol. Phys. 41 1123... [Pg.215]

The direct dissociation of diatomic molecules is the most well studied process in gas-surface dynamics, the one for which the combination of surface science and molecular beam teclmiques allied to the computation of total energies and detailed and painstaking solution of the molecular dynamics has been most successful. The result is a substantial body of knowledge concerning the importance of the various degrees of freedom (e.g. molecular rotation) to the reaction dynamics, the details of which are contained in a number of review articles [2, 36, 37, 38, 39, 40 and 41]. [Pg.906]

Figure A3.9.8. An elbow potential energy surface representing the dissociation of a diatomic in two dimensions-the molecular bond lengdi and tlie distance from the molecule to the surface. Figure A3.9.8. An elbow potential energy surface representing the dissociation of a diatomic in two dimensions-the molecular bond lengdi and tlie distance from the molecule to the surface.
Molecular rotation has two competing influences on the dissociation of diatomics [, and ]. A molecule will only be able to dissociate if its bond is oriented correctly with respect to the plane of the surface. If the bond is parallel to the plane, then dissociation will take place, whereas if the molecule is end-on to the surface, dissociation requires one atom to be ejected into the gas phase. In most cases, this reverse Eley-RideaF process is energetically very... [Pg.909]

These electronic energies dependence on the positions of the atomic centres cause them to be referred to as electronic energy surfaces such as that depicted below in figure B3.T1 for a diatomic molecule. For nonlinear polyatomic molecules having atoms, the energy surfaces depend on 3N - 6 internal coordinates and thus can be very difficult to visualize. In figure B3.T2, a slice tln-oiigh such a surface is shown as a fimction of two of the 3N - 6 internal coordinates. [Pg.2154]

Figure B3.2.12. Schematic illustration of geometries used in the simulation of the chemisorption of a diatomic molecule on a surface (the third dimension is suppressed). The molecule is shown on a surface simulated by (A) a semi-infinite crystal, (B) a slab and an embedding region, (C) a slab with two-dimensional periodicity, (D) a slab in a siipercell geometry and (E) a cluster. Figure B3.2.12. Schematic illustration of geometries used in the simulation of the chemisorption of a diatomic molecule on a surface (the third dimension is suppressed). The molecule is shown on a surface simulated by (A) a semi-infinite crystal, (B) a slab and an embedding region, (C) a slab with two-dimensional periodicity, (D) a slab in a siipercell geometry and (E) a cluster.
Figure B3.4.7. Schematic example of potential energy curves for photo-absorption for a ID problem (i.e. for diatomics). On the lower surface the nuclear wavepacket is in the ground state. Once this wavepacket has been excited to the upper surface, which has a different shape, it will propagate. The photoabsorption cross section is obtained by the Fourier transfonn of the correlation function of the initial wavefimction on tlie excited surface with the propagated wavepacket. Figure B3.4.7. Schematic example of potential energy curves for photo-absorption for a ID problem (i.e. for diatomics). On the lower surface the nuclear wavepacket is in the ground state. Once this wavepacket has been excited to the upper surface, which has a different shape, it will propagate. The photoabsorption cross section is obtained by the Fourier transfonn of the correlation function of the initial wavefimction on tlie excited surface with the propagated wavepacket.
The simplest condensed phase VER system is a dilute solution of a diatomic in an atomic (e.g. Ar or Xe) liquid or crystal. Other simple systems include neat diatomic liquids or crystals, or a diatomic molecule bound to a surface. A major step up in complexity occurs with poly atomics, with several vibrations on the same molecule. This feature guarantees enonnous qualitative differences between diatomic and polyatomic VER, and casts doubt on the likelihood of understanding poly atomics by studying diatomics alone. [Pg.3034]

VER of diatomic molecules bound to surfaces [28] was first studied by Eieilweil and co-workers [29], who used... [Pg.3035]

By using this approach, it is possible to calculate vibrational state-selected cross-sections from minimal END trajectories obtained with a classical description of the nuclei. We have studied vibrationally excited H2(v) molecules produced in collisions with 30-eV protons [42,43]. The relevant experiments were performed by Toennies et al. [46] with comparisons to theoretical studies using the trajectory surface hopping model [11,47] fTSHM). This system has also stimulated a quantum mechanical study [48] using diatomics-in-molecule (DIM) surfaces [49] and invoicing the infinite-onler sudden approximation (lOSA). [Pg.241]

H(I) and H(II). This fact does not provide any information on the nuclear sti ucture of this species at the energy minimum. By symmetry, it is clear that the system has three equivalent minima on the ground-state surface, which were designated as the three diatomic pairs. The nuclear geometry of each of these minima is quite different from that of the other two. [Pg.335]

In Chapter IX, Liang et al. present an approach, termed as the crude Bom-Oppenheimer approximation, which is based on the Born-Oppen-heimer approximation but employs the straightforward perturbation method. Within their chapter they develop this approximation to become a practical method for computing potential energy surfaces. They show that to carry out different orders of perturbation, the ability to calculate the matrix elements of the derivatives of the Coulomb interaction with respect to nuclear coordinates is essential. For this purpose, they study a diatomic molecule, and by doing that demonstrate the basic skill to compute the relevant matrix elements for the Gaussian basis sets. Finally, they apply this approach to the H2 molecule and show that the calculated equilibrium position and foree constant fit reasonable well those obtained by other approaches. [Pg.771]

Suppose that W(r,Q) describes the radial (r) and angular (0) motion of a diatomic molecule constrained to move on a planar surface. If an experiment were performed to measure the component of the rotational angular momentum of the diatomic molecule perpendicular to the surface (Lz= -ih d/dQ), only values equal to mh (m=0,1,-1,2,-2,3,-3,...) could be observed, because these are the eigenvalues of ... [Pg.45]

A diatomic molecule constrained to rotate on a flat surface can be modeled as a planar... [Pg.85]

DIM (diatomics-in-molecules) a semiempirical method used for representing potential energy surfaces... [Pg.362]

The most widely used particulate support is diatomaceous earth, which is composed of the silica skeletons of diatoms. These particles are quite porous, with surface areas of 0.5-7.5 m /g, which provides ample contact between the mobile phase and stationary phase. When hydrolyzed, the surface of a diatomaceous earth contains silanol groups (-SiOH), providing active sites that absorb solute molecules in gas-solid chromatography. [Pg.564]

Filter aids should have low bulk density to minimize settling and aid good distribution on a filter-medium surface that may not be horizontal. They should also be porous and capable of forming a porous cake to minimize flow resistance, and they must be chemically inert to the filtrate. These characteristics are all found in the two most popular commercial filter aids diatomaceous silica (also called diatomite, or diatomaceous earth), which is an almost pure silica prepared from deposits of diatom skeletons and expanded perhte, particles of puffed lava that are principally aluminum alkali siheate. Cellulosic fibers (ground wood pulp) are sometimes used when siliceous materials cannot be used but are much more compressible. The use of other less effective aids (e.g., carbon and gypsum) may be justified in special cases. Sometimes a combination or carbon and diatomaceous silica permits adsorption in addition to filter-aid performance. Various other materials, such as salt, fine sand, starch, and precipitated calcium carbonate, are employed in specific industries where they represent either waste material or inexpensive alternatives to conventional filter aids. [Pg.1708]


See other pages where Surfaces diatomic is mentioned: [Pg.115]    [Pg.309]    [Pg.132]    [Pg.115]    [Pg.309]    [Pg.132]    [Pg.639]    [Pg.662]    [Pg.55]    [Pg.913]    [Pg.915]    [Pg.2297]    [Pg.3035]    [Pg.5]    [Pg.298]    [Pg.308]    [Pg.158]    [Pg.160]    [Pg.301]    [Pg.95]    [Pg.158]    [Pg.160]    [Pg.301]    [Pg.55]    [Pg.55]    [Pg.58]    [Pg.455]    [Pg.455]    [Pg.142]    [Pg.237]    [Pg.452]    [Pg.111]    [Pg.459]    [Pg.16]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Atom-diatom potential energy surfaces

Diatomics on a Surface

Diatomics-in-molecule surfaces

Ground electronic surface, diatomic molecule

© 2024 chempedia.info