Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface molecular model

The total surface energy generally is larger than the surface free energy. It is frequently the more informative of the two quantities, or at least it is more easily related to molecular models. [Pg.49]

A quite different means for the experimental determination of surface excess quantities is ellipsometry. The technique is discussed in Section IV-3D, and it is sufficient to note here that the method allows the calculation of the thickness of an adsorbed film from the ellipticity produced in light reflected from the film covered surface. If this thickness, t, is known, F may be calculated from the relationship F = t/V, where V is the molecular volume. This last may be estimated either from molecular models or from the bulk liquid density. [Pg.78]

Figure A3.10.23 Schematic diagram of molecular CO chemisorption on a metal surface. The model is based on a donor-acceptor scheme where the CO 5 a FIOMO donates charge to surface unoccupied states and the surface back-donates charge to the CO 2 71 LUMO [58]. Figure A3.10.23 Schematic diagram of molecular CO chemisorption on a metal surface. The model is based on a donor-acceptor scheme where the CO 5 a FIOMO donates charge to surface unoccupied states and the surface back-donates charge to the CO 2 71 LUMO [58].
Connolly surfaces are standard in Molecular Modeling tools, and permit the quantitative and qualitative comparison of different molecules. [Pg.127]

Molecular mechanics methods have been used particularly for simulating surface-liquid interactions. Molecular mechanics calculations are called effective potential function calculations in the solid-state literature. Monte Carlo methods are useful for determining what orientation the solvent will take near a surface. Molecular dynamics can be used to model surface reactions and adsorption if the force held is parameterized correctly. [Pg.319]

The stereoselectivity of this reaction depends on how the alkene approaches the catalyst surface As the molecular model m Figure 6 3 shows one of the methyl groups on the bridge carbon lies directly over the double bond and blocks that face from easy access to the catalyst The bottom face of the double bond is more exposed and both hydrogens are transferred from the catalyst surface to that face... [Pg.235]

Find the molecular model of 18 crown 6 (see Figure 16 2) on Learning By Modeling and examine its electrostatic potential map View the map in vanous modes (dots contours and as a transparent surface) Does 18 crown 6 have a dipole moment Are vicinal oxygens anti or gauche to one another"d... [Pg.700]

Fig. 9. Uptake curves for N2 in two samples of carbon molecular sieve showing conformity with diffusion model (eq. 24) for sample 1 (A), and with surface resistance model (eq. 26) for example 2 (0)j LDF = linear driving force. Data from ref. 18. Fig. 9. Uptake curves for N2 in two samples of carbon molecular sieve showing conformity with diffusion model (eq. 24) for sample 1 (A), and with surface resistance model (eq. 26) for example 2 (0)j LDF = linear driving force. Data from ref. 18.
The mechanism of the synthesis reaction remains unclear. Both a molecular mechanism and an atomic mechanism have been proposed. Strong support has been gathered for the atomic mechanism through measurements of adsorbed nitrogen atom concentrations on the surface of model working catalysts where dissociative N2 chemisorption is the rate-determining step (17). The likely mechanism, where (ad) indicates surface-adsorbed species, is as follows ... [Pg.84]

Early efforts to develop molecular models emphasized ways of representing three-dimensional aspects in two-dimensional projections. Some of the problems addressed were the folding of macromolecules (43,44) and two-dimensional projections with hidden surfaces (45,46). The state of the art in the early 1970s has been reviewed (47). [Pg.63]

The first simulation studies of full double layers with molecular models of ions and solvent were performed by Philpott and coworkers [51,54,158] for the NaCl solution, using the fast multipole method for the calculation of Coulomb interactions. The authors studied the screening of a negative surface charge by free ions in several highly concentrated NaCl solutions. A combination of (9-3) LJ potential and image charges was used to describe the metal surface. [Pg.365]

For Hg, the temperature coefficient of Ea=0 was determined by Randies and Whiteley78 and found to be equal to 0.57 mV K l.On the basis of a simple up-and-down molecular model for water,79 this positive value has been taken to indicate a preferential orientation, with the negative end of the molecular dipole (oxygen) toward the metal surface. While this may well be the case, the above discussion shows that the analysis of the experimental value is far more complex. [Pg.24]

To build a molecular model of the equilibrium between a liquid and its vapor we first suppose that the liquid is introduced into an evacuated closed container. Vapor forms as molecules leave the surface of the liquid. Most evaporation takes place from the surface of the liquid because the molecules there are least strongly bound to their neighbors and can escape more easily than those in the bulk. Howevei as the number of molecules in the vapor increases, more of them become available to strike the surface of the liquid, stick to it, and become part of the liquid again. Eventually, the number of molecules returning to the liquid each second matches the number escaping (Fig. 8.2). The vapor is now condensing as fast as the liquid is vaporizing, and so the equilibrium is dynamic in the sense introduced in Section 7.11 ... [Pg.431]

Advanced adhesives are composite liquids that can be used, for example, to join aircraft parts, thus avoiding the use of some 30,000 rivets that are heavy, are labor-intensive to install, and pose quality-control problems. Adhesives research has not involved many chemical engineers, but the generic problems include surface science, polymer rheology and thermodynamics, and molecular modeling of materials... [Pg.82]

In this brief review we illustrated on selected examples how combinatorial computational chemistry based on first principles quantum theory has made tremendous impact on the development of a variety of new materials including catalysts, semiconductors, ceramics, polymers, functional materials, etc. Since the advent of modem computing resources, first principles calculations were employed to clarify the properties of homogeneous catalysts, bulk solids and surfaces, molecular, cluster or periodic models of active sites. Via dynamic mutual interplay between theory and advanced applications both areas profit and develop towards industrial innovations. Thus combinatorial chemistry and modem technology are inevitably intercoimected in the new era opened by entering 21 century and new millennium. [Pg.11]

Molecular modeling showed that WO3 surface has a structure where p-xylene may adsorb well, explaining the high activity of WO3 in p-xylene conversion. Experimental data in this study show that Sb addition modifies significantly the activity and selectivity properties of WO3 as well as the catalyst structure. Fig. 3 shows the minimum and maximum p-xylene... [Pg.62]


See other pages where Surface molecular model is mentioned: [Pg.137]    [Pg.453]    [Pg.265]    [Pg.69]    [Pg.89]    [Pg.137]    [Pg.453]    [Pg.265]    [Pg.69]    [Pg.89]    [Pg.105]    [Pg.154]    [Pg.350]    [Pg.161]    [Pg.271]    [Pg.273]    [Pg.279]    [Pg.317]    [Pg.625]    [Pg.324]    [Pg.161]    [Pg.80]    [Pg.158]    [Pg.159]    [Pg.160]    [Pg.166]    [Pg.287]    [Pg.1145]    [Pg.46]    [Pg.15]    [Pg.83]    [Pg.797]    [Pg.626]    [Pg.287]    [Pg.63]   
See also in sourсe #XX -- [ Pg.169 , Pg.428 , Pg.557 ]




SEARCH



Molecular surface

© 2024 chempedia.info