Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface modifications oxidation process

One of the promising methods is to introduce various functional groups on their nonreactive surfaces via oxidative processes [12]. Although many studies have addressed the covalent modification of CNTs in an aqueous environment, little attention has been devoted to dry methods. Dry processes support a mild oxidizing environment and, as a result, are usually less effective than wet methods. Furthermore, dry methods require the accurate control of the temperature, atmosphere, and reaction time during the process [13, 14]. [Pg.234]

In addition, there are many surface modification processes that use triplet sensitizers to permit oxidation reactions. In a typical process, polyisocyanate is applied on a polyolefin together with a sensitizer such as benzo-phenone and then irradiated with UV light. As shown in Eq. (15) the sensitizer has an oxidizing effect to produce hydroxyl groups over the polymer surface. These hydroxyl groups finally react with isocyanate to provide a functional polymer [56,57]. [Pg.825]

When the films were treated in either an oxygen plasma environment or under UV/ozone irradiation, the rates of oxidation were faster for the plasma process. Irradiation of chitosan solution showed that UV/ozone induces depolymerization. In both plasma and UV/ozone reactions, the main active component for surface modification was UV irradiation at a wavelength below 360 nm [231]. [Pg.183]

The improvement of its activity and stability has been approach by the use of GE tools (see Refs. [398] and [399], respectively). A process drawback is the fact that the oxidation of hydrophobic compounds in an organic solvent becomes limited by substrate partition between the active site of the enzyme and the bulk solvent [398], To provide the biocatalyst soluble with a hydrophobic active site access, keeping its solubility in organic solvents, a double chemical modification on horse heart cytochrome c has been performed [400,401], First, to increase the active-site hydrophobicity, a methyl esterification on the heme propionates was performed. Then, polyethylene glycol (PEG) was used for a surface modification of the protein, yielding a protein-polymer conjugates that are soluble in organic solvents. [Pg.187]

In addition, the rate of Oz reduction, forming 02 by electron, is of importance in preventing carrier recombination during photocatalytic processes utilizing semiconductor particles. 02 formation may be the slowest step in the reaction sequence for the oxidation of organic molecules by OH radicals or directly by positive holes. Cluster deposition of noble metals such as Pt, Pd, and Ag on semiconductor surfaces has been demonstrated to accelerate their formation because the noble metal clusters of appropriate loading or size can effectively trap the photoinduced electrons [200]. Therefore, the addition of a noble metal to a semiconductor is considered as an effective method of semiconductor surface modification to improve the separation efficiency of photoinduced electron and hole pairs. [Pg.443]

One advantage of sol-gel processing over surface modification is to create the inorganic oxide support in situ. Hence, without the limitation of the surface area of particles, more organic groups can be incorporated, even though their accessibility is not warranted. Another advantage is the possibility to... [Pg.166]

PDMS in its native form does not possess reactive groups that can be used for the covalent attachment of NAs [51]. However, the PDMS surface can be plasma induced oxidized and then fimctionaUzed with organosilanes carrying the desired head group. For example, a PDMS surface has been modified with 3-mercaptotrimethoxysilane to yield a thiol-terminated surface, to which a 5 -acrylamide modified DNA has been covalently attached [52]. See Fig. 13 for a representation of the PDMS surface-modification process. [Pg.92]

The limiting factors that control photocatalysis efficiency are rapid recombination between photo-generated charge carriers, and the backward reaction leading to recombination of the formed molecular hydrogen and oxygen. To retard these processes efforts have typically focused on surface modification of the semiconductor particles using metals or metal oxides. [Pg.455]

These structural changes are accompanied by significant reactivity modifications of the surface vanadia species. The addition of the surface potassium oxide species decreases the reducibility of the surface vanadia species in temperature programmed reduction (TPR) studies and the TOF for methanol oxidation.23,50 The most likely reason for this behavior is that the surface potassium oxide species is intimately coordinated to the bridging V-O-Support bond and retards its participation in these redox processes. Thus, all oxidation reactions, involving one surface vanadia site as well as dual surface vanadia-acidic sites, will be retarded by the surface potassium oxide additive. The basic properties of the surface potassium oxide additive may also affect the product selectivity by... [Pg.48]

Thus hole or electron transfer can follow a number of pathways across the semiconductor/electrolyte interface. First, one can have direct oxidative or reductive charge transfer to solution species resulting in desired product formation. Second, one can have direct charge transfer resulting in surface modification, such as oxide film growth on GaP or CdS in aqueous PECs. Finally, one can have photoemission of electrons or holes directly into the electrolyte. All of these processes provide some information about the electronic structure of the interface. [Pg.88]

If (23) is selected as the dihalosilane, a convenient way of modifying the nickel surface is available.64 The electrochemical properties of the treated nickel electrode are very similar to those of a similarly derivatized platinum electrode for example, both are equally effective in the elec-trocatalytic oxidation-reduction of solution ferrocene. Normally oxidation of the nickel surface would be a competing process ultimately rendering the electrode passive. The surface modification clearly eliminates this problem and opens up the possibility of using surface modified inexpensive metals as electrodes. [Pg.20]

Deo, N. and Natarajan, K.A., Surface modification and biobeneficiation of some oxide minerals using Bacillus polymyxa, Miner. Metall. Process., 14, 32, 1997. [Pg.173]


See other pages where Surface modifications oxidation process is mentioned: [Pg.69]    [Pg.288]    [Pg.519]    [Pg.118]    [Pg.287]    [Pg.322]    [Pg.14]    [Pg.29]    [Pg.508]    [Pg.453]    [Pg.138]    [Pg.217]    [Pg.57]    [Pg.13]    [Pg.425]    [Pg.52]    [Pg.5]    [Pg.172]    [Pg.776]    [Pg.73]    [Pg.126]    [Pg.82]    [Pg.200]    [Pg.178]    [Pg.39]    [Pg.154]    [Pg.113]    [Pg.302]    [Pg.323]    [Pg.428]    [Pg.60]    [Pg.193]    [Pg.276]    [Pg.181]    [Pg.208]    [Pg.405]    [Pg.323]    [Pg.319]   
See also in sourсe #XX -- [ Pg.273 , Pg.274 , Pg.275 , Pg.276 , Pg.277 , Pg.278 , Pg.279 , Pg.280 , Pg.281 , Pg.282 , Pg.283 , Pg.284 , Pg.285 , Pg.286 , Pg.287 , Pg.288 ]




SEARCH



Modifications oxidation

Modifications, processes

Oxidation, surface processes

Processing modification

Surface processed

Surface processes

© 2024 chempedia.info