Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface concentration pressure

If the spreading is into a limited surface area, as in a laboratory experiment, the film front rather quickly reaches the boundaries of the trough. The film pressure at this stage is low, and the now essentially uniform film more slowly increases in v to the final equilibrium value. The rate of this second-stage process is mainly determined by the rate of release of material from the source, for example a crystal, and the surface concentration F [46]. Franses and co-workers [47] found that the rate of dissolution of hexadecanol particles sprinkled at the water surface controlled the increase in surface pressure here the slight solubility of hexadecanol in the bulk plays a role. [Pg.111]

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

The course of a surface reaction can in principle be followed directly with the use of various surface spectroscopic techniques plus equipment allowing the rapid transfer of the surface from reaction to high-vacuum conditions see Campbell [232]. More often, however, the experimental observables are the changes with time of the concentrations of reactants and products in the gas phase. The rate law in terms of surface concentrations might be called the true rate law and the one analogous to that for a homogeneous system. What is observed, however, is an apparent rate law giving the dependence of the rate on the various gas pressures. The true and the apparent rate laws can be related if one assumes that adsorption equilibrium is rapid compared to the surface reaction. [Pg.724]

Kinetic-molecular theory provides an explanation on a molecular level for this equilibrium. Evaporation from the liquid occurs as fast moving molecules on the surface escape from the liquid. In turn, molecules in the gas phase strike the liquid and condense, As the concentration (pressure) of gas molecules builds up in the gas phase, the rate of condensation increases. Eventually, a pressure is reached where the rate of condensation and rate of evaporation just balance, and equilibrium is achieved. The equilibrium pressure is denoted by p and is known as the vapor pressure. The magnitude ofp depends upon the substance, composition of the liquid, and any two of our thermodynamic variables such as temperature and total pressure. The criteria for equilibrium that we will now derive provide the thermodynamic relationships that will help... [Pg.225]

When a polymer sheet of thickness L is immersed in the gas at a constant pressure, the surface concentration increases instantaneously, to a steady value which is then spread by diffusion throughout the whole bulk of the polymer sheet to finally give a uniform concentration. During the sorption the concentration gradients in the polymer decrease as the time progresses reducing the sorption... [Pg.201]

Langmuir s research on how oxygen gas deteriorated the tungsten filaments of light bulbs led to a theory of adsorption that relates the surface concentration of a gas to its pressure above the surface (1915). This, together with Taylor s concept of active sites on the surface of a catalyst, enabled Hinshelwood in around 1927 to formulate the Langmuir-Hinshelwood kinetics that we still use today to describe catalytic reactions. Indeed, research in catalysis was synonymous with kinetic analysis... [Pg.23]

The effects of the partial pressures of and 0 on the formation of the adsorbed peroxide species were examined. These results have been compared with the kinetic results for the conversion of CH by using the flow system. As shown in Fig. 8 (A), the surface concentration of the peroxide increased roughly linearly with a rise in the partial pressure of H,. On the other hand, it was saturated at a low partial pressure of O, (Fig. 8 (B)). Very similar trends were observed for the kinetic measurements for the conversion rate of CH as functions of the partial pressures of H, and O, as shown in Fig. 9. These observations further support that the peroxide species is responsible for the partial oxidation of CH. ... [Pg.404]

Quantitative analysis using FAB is not straightforward, as with all ionisation techniques that use a direct insertion probe. While the goal of the exercise is to determine the bulk concentration of the analyte in the FAB matrix, FAB is instead measuring the concentration of the analyte in the surface of the matrix. The analyte surface concentration is not only a function of bulk analyte concentration, but is also affected by such factors as temperature, pressure, ionic strength, pH, FAB matrix, and sample matrix. With FAB and FTB/LSIMS the sample signal often dies away when the matrix, rather than the sample, is consumed therefore, one cannot be sure that the ion signal obtained represents the entire sample. External standard FAB quantitation methods are of questionable accuracy, and even simple internal standard methods can be trusted only where the analyte is found in a well-controlled sample matrix or is separated from its sample matrix prior to FAB analysis. Therefore, labelled internal standards and isotope dilution methods have become the norm for FAB quantitation. [Pg.369]

The second example, a blend sample consists of 80% PA 6.6, 18% PTFE and 2% silicone oil. From the relative concentrations, it can be seen that PA forms the matrix and provides the necessary stability to the bearing. PTFE acts as an incorporated lubricant. The two main components are not chemically linked. Therefore, silicone oil has been added to work as a boundary lubricant during the break-in phase of the bearing. Due to its liquid nature, it quickly migrates to the surface when pressure is applied and prevents abrasion at the first stage. Shortly after, a thin film of PTFE forms at the interface between the thermoplastic bearing and the counter part. [Pg.540]

Let us consider the mechanism (85) for definiteness. The mechanism (86) yields the same result, as can be demonstrated. We denote by Poa and PH2o the partial pressures of oxygen and water vapours. If the reaction takes place in the liquid phase, the partial pressures must then be replaced by the corresponding concentrations. The surface concentrations of the chemisorbed 0 and H atoms and H02 complexes are denoted by No, Nn and Nkoi, respectively. Let N+h, N 0, N hos, N°h and N°o be the surface... [Pg.199]

The second most apparent limitation on studies of surface reactivity, at least as they relate to catalysis, is the pressure range in which such studies are conducted. The 10 to 10 Torr pressure region commonly used is imposed by the need to prevent the adsorption of undesired molecules onto the surface and by the techniques employed to determine surface structure and composition, which require relatively long mean free paths for electrons in the vacuum. For reasons that are detailed later, however, this so-called pressure gap may not be as severe a problem as it first appears. There are many reaction systems for which the surface concentration of reactants and intermediates found on catalysts can be duplicated in surface reactivity studies by adjusting the reaction temperature. For such reactions the mechanism can be quite pressure insensitive, and surface reactivity studies will prove very useful for greater understanding of the catalytic process. [Pg.3]

Gibbs adsorption equation phys chem A formula for a system involving a solvent and a solute, according to which there Is an excess surface concentration of solute if the solute decreases the surface tension, and a deficient surface concentration of solute if the solute increases the surface tension. gibz ad sorp shan i.kwa-zhon Gibbs adsorption isotherm physchem An equation for the surface pressure of surface [< ... [Pg.166]

Williams Proc. Roy. Sog. Edinburgh, 287, 1919) assuming that the surface concentration was always proportional to the pressure... [Pg.137]


See other pages where Surface concentration pressure is mentioned: [Pg.182]    [Pg.130]    [Pg.182]    [Pg.130]    [Pg.273]    [Pg.246]    [Pg.464]    [Pg.91]    [Pg.101]    [Pg.19]    [Pg.186]    [Pg.188]    [Pg.190]    [Pg.235]    [Pg.464]    [Pg.52]    [Pg.541]    [Pg.644]    [Pg.21]    [Pg.144]    [Pg.551]    [Pg.173]    [Pg.246]    [Pg.8]    [Pg.34]    [Pg.71]    [Pg.241]    [Pg.230]    [Pg.234]    [Pg.361]    [Pg.393]    [Pg.101]    [Pg.137]    [Pg.324]    [Pg.561]    [Pg.221]    [Pg.36]    [Pg.158]    [Pg.215]   


SEARCH



Critical micelle concentration surface pressure

Pressure concentration

Surface concentration pressures adsorption

Surface concentrations

Surface pressure

Surface pressure-concentration isotherms

Surfaces concentrator

© 2024 chempedia.info