Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface complex hydrolysis reaction

Although extraction of lipids from membranes can be induced in atomic force apparatus (Leckband et al., 1994) and biomembrane force probe (Evans et al., 1991) experiments, spontaneous dissociation of a lipid from a membrane occurs very rarely because it involves an energy barrier of about 20 kcal/mol (Cevc and Marsh, 1987). However, lipids are known to be extracted from membranes by various enzymes. One such enzyme is phospholipase A2 (PLA2), which complexes with membrane surfaces, destabilizes a phospholipid, extracts it from the membrane, and catalyzes the hydrolysis reaction of the srir2-acyl chain of the lipid, producing lysophospholipids and fatty acids (Slotboom et al., 1982 Dennis, 1983 Jain et al., 1995). SMD simulations were employed to investigate the extraction of a lipid molecule from a DLPE monolayer by human synovial PLA2 (see Eig. 6b), and to compare this process to the extraction of a lipid from a lipid monolayer into the aqueous phase (Stepaniants et al., 1997). [Pg.50]

These complexes anchored to a solid via a ligand have been tested for a number of reactions including the hydrogenation, hydroformylation, hydrosilylation, isomerization, dimerization, oligomerization, and polymerization of olefins carbonylation of methanol the water gas shift reaction and various oxidation and hydrolysis reactions (see later for some examples). In most cases, the characterization of the supported entities is very limited the surface reactions are often described on the basis of well-known chemistry, confirmed in some cases by spectroscopic data and elemental analysis. [Pg.450]

To be useful in modeling electrolyte sorption, a theory needs to describe hydrolysis and the mineral surface, account for electrical charge there, and provide for mass balance on the sorbing sites. In addition, an internally consistent and sufficiently broad database of sorption reactions should accompany the theory. Of the approaches available, a class known as surface complexation models (e.g., Adamson, 1976 Stumm, 1992) reflect such an ideal most closely. This class includes the double layer model (also known as the diffuse layer model) and the triple layer model (e.g., Westall and Hohl, 1980 Sverjensky, 1993). [Pg.155]

Surface complexation models for the oxide-electrolyte interface are reviewed two models for surface hydrolysis reactions are considered (diprotic surface groups and monoprotic surface groups) and four models for the electric double layer (Helmholtz,... [Pg.54]

The sorption processes for cobalt complexes can be complicated by hydrolysis reactions of the complex in solution, surface induced ligand loss processes, sorption of hydrolysis products of either amine, protonated amine, or mixed amine/aquo cobalt complexes, and oxidation/reduction processes associated with cobalt. The principal objective of the XPS studies was to evaluate, the chemical state of cobalt and amine ligands, the surface concentration of the respective elements, and the ligand to cobalt ratio as indicated by the surface nitrogen to cobalt atomic ratio. [Pg.508]

The surface complexation models quantify adsorption with experimentally determined equilibrium constants. Another, less widely used approach considers the relationship between the equilibrium constant for the adsorption reaction and the associated free energy change (James and Healy, 1972). Attempts have been made to determine the chemical contribution to the overall adsorption free energy by fitting adsorption isotherms to the experimental data values of -50, -33 and —45 kj mol were found for the change in chemical free energy associated with adsorption of Cr, Ni and Zn, respectively, on ferrihydrite (Crawford et al., 1993). Values ranging from -21 to 241 kJ mol were found for Ni on hematite the actual value depended upon the hydrolysis species that were assumed to exist (Fuerstenau and Osseo-Assare, 1987). [Pg.258]

The previous extension of solvent mixtures involved solvent interfaces. This organic-water interfacial technique has been successfully extended to the synthesis of phenylacetic and phenylenediacetic acids based on the use of surface-active palla-dium-(4-dimethylaminophenyl)diphenylphosphine complex in conjunction with dode-cyl sodium sulfate to effect the carbonylation of benzyl chloride and dichloro-p-xylene in a toluene-aqueous sodium hydroxide mixture. The product yields at 60°C and 1 atm are essentially quantitative based on the substrate conversions, although carbon monoxide also undergoes a slow hydrolysis reaction along with the carbonylation reactions. The side reaction produces formic acid and is catalyzed by aqueous base but not by palladium. The phosphine ligand is stable to the carbonylation reactions and the palladium can be recovered quantitatively as a compact emulsion between the organic and aqueous phases after the reaction, but the catalytic activity of the recovered palladium is about a third of its initial activity due to product inhibition (Zhong et al., 1996). [Pg.73]

It is well known that hydrolyzed polyvalent metal ions are more efficient than unhydrolyzed ions in the destabilization of colloidal dispersions. Monomeric hydrolysis species undergo condensation reactions under certain conditions, which lead to the formation of multi- or polynuclear hydroxo complexes. These reactions take place especially in solutions that are oversaturated with respect to the solubility limit of the metal hydroxide. The observed multimeric hydroxo complexes or isopolycations are assumed to be soluble kinetic intermediates in the transition that oversaturated solutions undergo in the course of precipitation of hydrous metal oxides. Previous work by Matijevic, Janauer, and Kerker (7) Fuerstenau, Somasundaran, and Fuerstenau (I) and O Melia and Stumm (12) has shown that isopolycations adsorb at interfaces. Furthermore, it has been observed that species, adsorbed at the surface, destabilize colloidal suspensions at much lower concentrations than ions that are not specifically adsorbed. Ottewill and Watanabe (13) and Somasundaran, Healy, and Fuerstenau (16) have shown that the theory of the diffuse double layer explains the destabilization of dispersions by small concentrations of surfactant ions that have a charge opposite to... [Pg.103]

The hydrogen sulfides (H2S, SH-, S2 and their metal complexes) are well known in restricted reducing regions of the world ocean such as anoxic basins (1), but they have traditionally been dismissed as unimportant for, or even nonexistent in, most oxic seawaters 12-41. Several lines of reasoning are now beginning to suggest that sulfides actually do exist in the surface ocean, and enter into a rich metal chemistiy there. Extensive measurements of carbonyl sulfide (OCS) in seawater (5.61 permit the quantification of a mixed layer source, the hydrolysis reactions f7-111... [Pg.314]

Surface complexation reactions (surface hydrolysis, the formation of co-ordinative bonds at the surface with metals and with ligands). [Pg.519]

The nature of the species formed when V-contaminated FCC are exposed to steam remains somewhat controversial. When immersed in water (at room temperature), vanadium (supported on solids) undergoes complex hydrolysis-condensation-polymerization reactions that form H2V207 , HV207 and H2Vio02g ions [22,26]. V concentration, surface composition, and liquid pH control the nature of the polyanions formed and their degree of protonation. Different reactions and reaction products are expected to occur when the same V-contaminated materials are exposed to steam. However, it is believed that the same parameters (such as surface compositions, V-levels, and residence times) that influence the nature of the polyanions formed when V-contaminated solids are exposed to water will also affect the nature of the volatile V-compound formed when the same catalyst is exposed to steam. [Pg.28]

Figure 10,26 Correlation plot for some metal cations, of their first hydrolysis constants ( /fii) versus intrinsic surface complex constants i Ku) for their adsorption by Si02(am) assuming the constant capacitance model. The equation of the solid line is log = 0.09 -( 0.62 log A. Hydrolysis and adsorption reactions are written A,i -t- H2O = +... Figure 10,26 Correlation plot for some metal cations, of their first hydrolysis constants ( /fii) versus intrinsic surface complex constants i Ku) for their adsorption by Si02(am) assuming the constant capacitance model. The equation of the solid line is log = 0.09 -( 0.62 log A. Hydrolysis and adsorption reactions are written A,i -t- H2O = +...
A reduction in system pH enhances the solubility of PR, making the precipitation of pyromorphite minerals possible. However, the sorption of Pb decreases sharply as the system pH decreased, producing a sigmoidal function, usually referred to as an adsorption edge, which reflects the affinity of a metal species for a mineral surface (Sposito, 1984). The ability of Pb to form inner-sphere surface complexes is related to the ability of a species in solution to form hydroxides. In fact, it has been shown that surface affinity of metal cations for Fe-oxide and Fe-hydroxide surfaces agrees with their hydrolysis values (Hayes and Katz, 1996). An analogy between solution complexation and surface complexation is represented in the following reactions (Hayes and Katz, 1996) ... [Pg.612]


See other pages where Surface complex hydrolysis reaction is mentioned: [Pg.166]    [Pg.94]    [Pg.9]    [Pg.379]    [Pg.595]    [Pg.287]    [Pg.4]    [Pg.56]    [Pg.328]    [Pg.299]    [Pg.75]    [Pg.463]    [Pg.113]    [Pg.4720]    [Pg.314]    [Pg.2351]    [Pg.341]    [Pg.696]    [Pg.586]    [Pg.831]    [Pg.23]    [Pg.151]    [Pg.280]    [Pg.726]    [Pg.97]    [Pg.149]    [Pg.324]    [Pg.6]    [Pg.858]    [Pg.780]    [Pg.696]    [Pg.196]    [Pg.43]    [Pg.4719]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Complex surface reactions

Hydrolysis complexes

Hydrolysis reactions

Surface complex

Surface complexation

Surface complexation reactions

© 2024 chempedia.info