Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface absorption spectra

One group has successfiilly obtained infonnation about potential energy surfaces without measuring REPs. Instead, easily measured second derivative absorption profiles are obtained and linked to the fiill RRS spectrum taken at a single incident frequency. In this way, the painstaking task of measuring a REP is replaced by carefiilly recording the second derivative of the electronic absorption spectrum of the resonant transition [, 59],... [Pg.1201]

Whereas ATR spectroscopy is most commonly applied in obtaining infrared absorption spectra of opaque materials, reflection-absorption infrared spectroscopy (RAIRS) is usually used to obtain the absorption spectrum of a thin layer of material adsorbed on an opaque metal surface. An example would be carbon monoxide adsorbed on copper. The metal surface may be either in the form of a film or, of greaf imporfance in fhe sfudy of cafalysfs, one of fhe parficular crysfal faces of fhe mefal. [Pg.64]

EXAFS is part of the field of X-ray absorption spectroscopy (XAS), in which a number of acronyms abound. An X-ray absorption spectrum contains EXAFS data as well as the X-ray absorption near-edge structure, XANES (alternatively called the near-edge X-ray absorption fine structure, NEXAFS). The combination of XANES (NEXAFS) and EXAFS is commonly referred to as X-ray absorption fine structure, or XAFS. In applications of EXAFS to surface science, the acronym SEXAFS, for surface-EXAFS, is used. The principles and analysis of EXAFS and SEXAFS are the same. See the article following this one for a discussion of SEXAFS and NEXAFS. [Pg.215]

RAIRS spectra contain absorption band structures related to electronic transitions and vibrations of the bulk, the surface, or adsorbed molecules. In reflectance spectroscopy the ahsorhance is usually determined hy calculating -log(Rs/Ro), where Rs represents the reflectance from the adsorhate-covered substrate and Rq is the reflectance from the bare substrate. For thin films with strong dipole oscillators, the Berre-man effect, which can lead to an additional feature in the reflectance spectrum, must also be considered (Sect. 4.9 Ellipsometry). The frequencies, intensities, full widths at half maximum, and band line-shapes in the absorption spectrum yield information about adsorption states, chemical environment, ordering effects, and vibrational coupling. [Pg.251]

In the first case, a typical emission spectrum of a thin layer melt is observed, because the emission from the bottom surface is negligible compared to that from the melt itself. In the second case, the relationship between the emission from the bottom surface and the emission from the melt is reversed, so that the spectrum reverts to being similar to a regular absorption spectrum. [Pg.171]

Fig.2 shows the infrared absorption spectrum of the tin oxide film. In order to analyze the molecular structure of the deposited film, we deposited the tin oxide film on a KBr disc with thickness of 1 mm and diameter of 13 mm. Various peaks formed by surface reaction are observed including O-H stretching mode at 3400 cm, C=C stretching mode at 1648 cm, and Sn02 vibration mode at 530 cm. The formation of sp structure with graphite-like is due to ion bombardment with hydrogen ions at the surface and plasma polymerization of methyl group with sp -CHa. [Pg.386]

The case of water is particularly convenient because the required high Ka states may be detected in the solar absorption spectrum. However, it is difficult to observe the necessary high vibrational angular momentum states in molecules, which can only be probed by dispersed fluorescence or stimulated emission techniques. On the other hand, it is now possible to perform converged variational calculations on accurate potential energy surfaces, from which one could hope to verify the quantum monodromy and assess the extent to which it is disturbed by perturbations with other modes. Examples of such computed monodromy are seen for H2O in Fig. 2 and LiCN in Fig. 12. [Pg.89]

Gratzel and Serpone and co-workers recently reported on a picosecond laser flash photolysis study of TiO. They observed the absorption spectrum immediately after the 30 ps flash and attributed it to electrons trapped on Ti" " ions at the surface of the colloidal particles. The absorption decayed within nanoseconds, the rate being faster as the number of photons absorbed per colloidal particle increased. This decay was attributed to the recombination of the trapped electrons with holes. [Pg.152]

An absorption spectrum is a plot that shows how well dilferent frequencies of light couple to excitations in the sample. It is conventional to convert the units for frequency (v) from Hertz to wave numbers (cm-1) by dividing v by the speed of light (c). IR frequencies are characteristic of certain bonds in molecules and can thus be used to identify species on surfaces. Correlation charts are available which permit assignments of particular molecular species to certain IR frequencies. [Pg.43]

In applying RAIRS to CO adsorption, the contribution from CO molecules in the gas phase to the absorption spectrum at CO pressures above 10-3 mbar completely obscures the weak absorption signal of surface adsorbed CO. Beitel et al. found it possible to subtract out the gas phase absorption by coding the surface absorption signal by means of the polarization modulation (PM) technique applied to a conventional RAIRS spectrometer, p-polarised light produces a net surface electric field which can interact with adsorbed molecules, whereas both polarization states are equally sensitive to gas phase absorption because gas phase molecules are randomly oriented. By electronic filtering a differential spectrum is computed which does not show contributions from the gas phase and which has much higher surface sensitivity than a conventional RAIRS setup. [Pg.45]

The overall OD vibrational distribution from the HOD photodissociation resembles that from the D2O photodissociation. Similarly, the OH vibrational distribution from the HOD photodissociation is similar to that from the H2O photodissociation. There are, however, notable differences for the OD products from HOD and D2O, similarly for the OH products from HOD and H2O. It is also clear that rotational temperatures are all quite cold for all OH (OD) products. From the above experimental results, the branching ratio of the H and D product channels from the HOD photodissociation can be estimated, since the mixed sample of H2O and D2O with 1 1 ratio can quickly reach equilibrium with the exact ratios of H2O, HOD and D2O known to be 1 2 1. Because the absorption spectrum of H2O at 157nm is a broadband transition, we can reasonably assume that the absorption cross-sections are the same for the three water isotopomer molecules. It is also quite obvious that the quantum yield of these molecules at 157 nm excitation should be unity since the A1B surface is purely repulsive and is not coupled to any other electronic surfaces. From the above measurement of the H-atom products from the mixed sample, the ratio of the H-atom products from HOD and H2O is determined to be 1.27. If we assume the quantum yield for H2O at 157 is unity, the quantum yield for the H production should be 0.64 (i.e. 1.27 divided by 2) since the HOD concentration is twice that of H2O in the mixed sample. Similarly, from the above measurement of the D-atom product from the mixed sample, we can actually determine the ratio of the D-atom products from HOD and D2O to be 0.52. Using the same assumption that the quantum yield of the D2O photodissociation at 157 nm is unity, the quantum yield of the D-atom production from the HOD photodissociation at 157 nm is determined to be 0.26. Therefore the total quantum yield for the H and D products from HOD is 0.64 + 0.26 = 0.90. This is a little bit smaller ( 10%) than 1 since the total quantum yield of the H and D productions from the HOD photodissociation should be unity because no other dissociation channel is present for the HOD photodissociation other than the H and D atom elimination processes. There are a couple of sources of error, however, in this estimation (a) the assumption that the absorption cross-sections of all three water isotopomers at 157 nm are exactly the same, and (b) the accuracy of the volume mixture in the... [Pg.103]

Figure 19. In situ X-ray absorption spectrum for a copper upd monolayer on a gold (111) electrode with the polarization of the X-ray beam being perpendicular (A) or parallel (B) to the electrode surface. Figure 19. In situ X-ray absorption spectrum for a copper upd monolayer on a gold (111) electrode with the polarization of the X-ray beam being perpendicular (A) or parallel (B) to the electrode surface.
The incident monochromatic photon-to-current conversion efficiency (IPCE), also called external quantum efficiency, is defined as the number of electrons generated by light in the external circuit divided by the number of incident photons as a function of excitation wavelength. It is expressed in Equation (7).29 In most cases, the photoaction spectrum overlaps with the absorption spectrum of the sensitizer adsorbed on the semiconductor surface. A high IPCE is a prerequisite for high-power photovoltaic applications, which depends on the sensitizer photon absorption, excited state electron injection, and electron transport to the terminals ... [Pg.723]

The vibronic coupling model has been applied to a number of molecular systems, and used to evaluate the behavior of wavepackets over coupled surfaces [191]. Recent examples are the radical cation of allene [192,193], and benzene [194] (for further examples see references cited therein). It has also been used to explain the lack of structure in the S2 band of the pyrazine absorption spectrum [109,173,174,195], and recently to study the photoisomerization of retinal [196],... [Pg.393]

Muller and Stock [227] used the vibronic coupling model Hamiltonian, Section III.D, to compare surface hopping and Ehrenfest dynamics with exact calculations for a number of model cases. The results again show that the semiclassical methods are able to provide a qualitative, if not quantitative, description of the dynamics. A large-scale comparison of mixed method and quantum dynamics has been made in a study of the pyrazine absorption spectrum, including all 24 degrees of freedom [228]. Here a method related to Ehrenfest dynamics was used with reasonable success, showing that these methods are indeed able to reproduce the main features of the dynamics of non-adiabatic molecular systems. [Pg.404]


See other pages where Surface absorption spectra is mentioned: [Pg.245]    [Pg.263]    [Pg.264]    [Pg.1320]    [Pg.299]    [Pg.304]    [Pg.507]    [Pg.416]    [Pg.8]    [Pg.64]    [Pg.249]    [Pg.371]    [Pg.1154]    [Pg.125]    [Pg.156]    [Pg.64]    [Pg.262]    [Pg.348]    [Pg.6]    [Pg.300]    [Pg.380]    [Pg.147]    [Pg.170]    [Pg.173]    [Pg.109]    [Pg.489]    [Pg.161]    [Pg.95]    [Pg.253]    [Pg.58]    [Pg.151]    [Pg.461]    [Pg.111]    [Pg.111]   


SEARCH



Absorption, surface

Surface absorptance

Surface spectra

© 2024 chempedia.info