Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supported catalysts continued

Third-generation high yield supported catalysts are also used in processes in which Hquid monomer is polymerized in continuous stirred tank reactors. The Hypol process (Mitsui Petrochemical), utilizes the same supported catalyst technology as the Spheripol process (133). Rexene has converted the hquid monomer process to the newer high yield catalysts. Shell uses its high yield (SHAC) catalysts to produce homopolymers and random copolymers in the Lippshac process (130). [Pg.416]

Polymer-supported catalysts incorporating organometaUic complexes also behave in much the same way as their soluble analogues (28). Extensive research has been done in attempts to develop supported rhodium complex catalysts for olefin hydroformylation and methanol carbonylation, but the effort has not been commercially successful. The difficulty is that the polymer-supported catalysts are not sufftciendy stable the valuable metal is continuously leached into the product stream (28). Consequendy, the soHd catalysts fail to eliminate the problems of corrosion and catalyst recovery and recycle that are characteristic of solution catalysis. [Pg.175]

For reasons which will become apparent in Chapters 4,8 and 11 of this book it is very likely that the increasing commercial importance of Zr02 and Ce02 supports for conventional supported metal catalyst is due to the ability of these supports to continuously provide backspillover anionic oxygen on the surface of the supported metal catalyst. [Pg.104]

All the supported catalysts used gave TCE conversions less than 20% for the wet oxidation at 310 K, except for the 5 wt.% CoOx/Ti02, which had a steady-state conversion of 45% via a transient behavior in activity up to 1 h on stream (Fig. 1). Subsequently, there was negligible TCE conversion for the bare Ti02 during continuous operating hours near 6. [Pg.306]

The use of IR pulse technique was reported for the first time around the year 2000 in order to study a catalytic reaction by transient mode [126-131], A little amount of reactant can be quickly added on the continuous flow using an injection loop and then introduce a transient perturbation to the system. Figure 4.10 illustrates the experimental system used for transient pulse reaction. It generally consists in (1) the gas flow system with mass flow controllers, (2) the six-ports valve with the injection loop, (3) the in situ IR reactor cell with self-supporting catalyst wafer, (4) the analysis section with a FTIR spectrometer for recording spectra of adsorbed species and (5) a quadruple MS for the gas analysis of reactants and products. [Pg.121]

In gas phase reactors, the monomer is introduced to the bottom of reactor where it percolates up through a fluidized bed of polymer granules and inert-media supported catalyst. A fraction of the monomer reacts to form more polymer granules, the remaining monomer being drawn from the top of the reactor, cooled, and recycled. Polymer granules are continuously wthdrawn from the bottom of the fluidized bed and the catalyst is replenished. [Pg.309]

In subsequent work the same supported catalysts were used in different reactor setups [20] (Figure 3.3). A vapour-phase reactor in which the supported catalyst was mounted on a bed was used for the hydroformylation of volatile alkenes such as cis-2-butene and trifluoropropene. The initial activities and selectivity s were similar to those of the homogeneous solutions, i.e. a TOF of 114 and 90% ee in the hydroformylation of trifluoropropene was reported. No rhodium was detected in the product phase, which means less then 0.8% of the loaded rhodium had leached. The results were, however, very sensitive to the conditions applied and, especially at longer reaction times, the catalyst decomposed. In a second approach the polymer supported complex was packed in a stainless steal column and installed in a continuous flow set-up. [Pg.43]

Figure 3.6. Turn over number (TON) displayed as function of time for the hydroformylation of 1-octene using a set-up for continuous processes with SCCO2 as mobile phase and supported catalyst 2... Figure 3.6. Turn over number (TON) displayed as function of time for the hydroformylation of 1-octene using a set-up for continuous processes with SCCO2 as mobile phase and supported catalyst 2...
Ultrafiltration has been used for the separation of dendritic polymeric supports in multi-step syntheses as well as for the separation of dendritic polymer-sup-ported reagents [4, 21]. However, this technique has most frequently been employed for the separation of polymer-supported catalysts (see Section 7.5) [18]. In the latter case, continuous flow UF-systems, so-called membrane reactors, were used for homogeneous catalysis, with catalysts complexed to dendritic ligands [23-27]. A critical issue for dendritic catalysts is the retention of the catalyst by the membrane (Fig. 7.2b, see also Section 7.5). [Pg.310]

The authors gratefully acknowledge the CREST Program Nano Catalyst of JSTand NEDO for financial support. They are also grateful to Sumitomo Trading Co. and Mr Uemura Masaaki for financial support and continuous cooperation during this study. [Pg.85]

The catalyst components are generally dissolved in methyl acetate which acts as both reactant and solvent. Other solvents may be used and in fact, upon several batch recycles where lower boiling products are distilled off, the solvent is an ethylidene diacetate-acetic acid mixture. Any water introduced in the reaction mixture will be consumed via ester and anhydride hydrolysis, therefore anhydrous conditions are warranted. Typical batch reaction examples are presented in Table 1. There is generally sufficient reactivity when carbon monoxide and hydrogen are present at 200-500 psi. Similar results were obtained from the pilot plant using a continuous stirred tank reactor (CSTR). The reaction can also be run continuously over a supported catalyst with a feed of methyl acetate, methyl iodide, CO, and hydrogen. [Pg.139]

Supported Au catalysts have been extensively studied because of their unique activities for the low temperature oxidation of CO and epoxidation of propylene (1-5). The activity and selectivity of Au catalysts have been found to be very sensitive to the methods of catalyst preparation (i.e., choice of precursors and support materials, impregnation versus precipitation, calcination temperature, and reduction conditions) as well as reaction conditions (temperature, reactant concentration, pressure). (6-8) High CO oxidation activity was observed on Au crystallites with 2-4 nm in diameter supported on oxides prepared from precipitation-deposition. (9) A number of studies have revealed that Au° and Au" play an important role in the low temperature CO oxidation. (3,10) While Au° is essential for the catalyst activity, the Au° alone is not active for the reaction. The mechanism of CO oxidation on supported Au continues to be a subject of extensive interest to the catalysis community. [Pg.147]


See other pages where Supported catalysts continued is mentioned: [Pg.489]    [Pg.220]    [Pg.500]    [Pg.189]    [Pg.265]    [Pg.266]    [Pg.218]    [Pg.413]    [Pg.87]    [Pg.245]    [Pg.52]    [Pg.241]    [Pg.23]    [Pg.33]    [Pg.154]    [Pg.245]    [Pg.33]    [Pg.1371]    [Pg.1541]    [Pg.203]    [Pg.268]    [Pg.85]    [Pg.332]    [Pg.333]    [Pg.499]    [Pg.112]    [Pg.105]    [Pg.411]    [Pg.227]    [Pg.390]    [Pg.416]    [Pg.288]    [Pg.677]    [Pg.185]    [Pg.308]    [Pg.209]    [Pg.116]    [Pg.234]   


SEARCH



Catalyst [continued)

© 2024 chempedia.info