Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Support preparation alumina

The sol—gel technique has been used mosdy to prepare alumina membranes. Figure 18 shows a cross section of a composite alumina membrane made by sHp coating successive sols with different particle sizes onto a porous ceramic support. SiUca or titanium membranes could also be made by the same principles. Unsupported titanium dioxide membranes with pore sizes of 5 nm or less have been made by the sol—gel process (57). [Pg.70]

The exopolyhedral metaHacarborane complex Ti(C2B2QH22)4, which is prepared by the reaction of TiCl and 1-Li-1,2-C2B2QH22, has also been reported to be an active heterogeneous catalyst for the polymerization of olefins when supported on alumina and in the presence of (C2H3)2A1C1 co-catalyst (230). [Pg.249]

Rapoport s findings have been confirmed in the authors laboratory where the actions of carbon-supported catalysts (5% metal) derived from ruthenium, rhodium, palladium, osmium, iridium, and platinum, on pyridine, have been examined. At atmospheric pressure, at the boiling point of pyridine, and at a pyridine-to-catalyst ratio of 8 1, only palladium was active in bringing about the formation of 2,2 -bipyridine. It w as also found that different preparations of palladium-on-carbon varied widely in efficiency (yield 0.05-0.39 gm of 2,2 -bipyridine per gram of catalyst), but the factors responsible for this variation are not knowm. Palladium-on-alumina was found to be inferior to the carbon-supported preparations and gave only traces of bipyridine,... [Pg.181]

A recent comparative investigation of the NO + CO reaction shows a significant rate enhancement in the formation of N2 on Ce0.98Pda02O2 8 prepared via a combustion synthesis method in comparison with conventional Pd-based catalysts supported on alumina... [Pg.297]

A catalytic system Mo-V-Nb-W supported on alumina was prepared by impregnation and investigated for the selective oxidation of propane. The effects of the variation of each metal and of the catalyst preparation were analysed. The results show that Mo and V species supported on alumina can lead to catalysts with high selectivity to propene and reasonable selectivity to acrolein. The presence of Nb and W seems to have little effect. The catalyst can be affected by the method of impregnation. [Pg.393]

The results presented in this paper therefore show that V and Mo species supported on alumina can give rise to a catalyst which has a high selectivity for the oxidation of propane to propene and a reasonable selectivity to acrolein and that both species are essential to give the optimal behaviour. Contrary to our previous observations and what observed for bulk catalysts [5], the presence of Nb and W seem to have little effect, perhaps because the methods used here restrict the active phase to a monolayer whereas previously prepared materials may have contained multilayer oxidic species. [Pg.402]

Ataloglou T., Vakros J., Bourikas K., Fountzoula C., Kordulis C., and Lycourghiotis A. 2005. Influence of the preparation method on the structure-activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation. Appl. Catal. B Environ. 57 299-312. [Pg.16]

Ruthenium catalysts, supported on a commercial alumina (surface area 155 m have been prepared using two different precursors RUCI3 and Ru(acac)3 [172,173]. Ultrasound is used during the reduction step performed with hydrazine or formaldehyde at 70 °C. The ultrasonic power (30 W cm ) was chosen to minimise the destructive effects on the support (loss of morphological structure, change of phase). Palladium catalysts have been supported both on alumina and on active carbon [174,175]. Tab. 3.6 lists the dispersion data provided by hydrogen chemisorption measurements of a series of Pd catalysts supported on alumina. is the ratio between the surface atoms accessible to the chemisorbed probe gas (Hj) and the total number of catalytic atoms on the support. An increase in the dispersion value is observed in all the sonicated samples but the effect is more pronounced for low metal loading. [Pg.125]

Upon discovery of this mechanism, new catalysts have been developed, now presenting alkylidene ligands in the metal coordination sphere, such as [(=SiO) Ta(=CH Bu)Np2 and [(=SiO)Mo(=NAr)(=CH Bu)Np] [43, 88]. Table 11.4 presents results obtained with several catalysts prepared by SOMC. Although [(=SiO) Ta(CH3)3Cp (=SiOSi=)] is not active in alkane metathesis (the tantalum site would not be as electrophilic as required) [18], results obtained with [(=SiO)Mo(=NAr) (=CH Bu)Np] show that ancillary ligands are not always detrimental to catalytic activity this species is as good a catalyst as tantalum hydrides. Tungsten hydrides supported on alumina or siHca-alumina are the best systems reported so far for alkane metathesis. The major difference among Ta, Mo and W catalysts is the selectivity to methane, which is 0.1% for Mo and less than 3% for W-based catalysts supported on alumina, whereas it is at least 9.5% for tantalum catalysts. This... [Pg.432]

The search for a new epoxidation method that would be appropriate for organic synthesis should also, preferably, opt for a catalytic process. Industry has shown the way. It resorts to catalysis for epoxidations of olefins into key intermediates, such as ethylene oxide and propylene oxide. The former is prepared from ethylene and dioxygen with silver oxide supported on alumina as the catalyst, at 270°C (15-16). The latter is prepared from propylene and an alkyl hydroperoxide, with homogeneous catalysis by molybdenum comp e ts( 17) or better (with respect both to conversion and to selectivity) with an heterogeneous Ti(IV) catalyst (18), Mixtures of ethylene and propylene can be epoxidized too (19) by ten-butylhydroperoxide (20) (hereafter referred to as TBHP). [Pg.318]

When controlled nitridation of surface layers is required, as for example in the modification of the chemical properties of the surface of a support, the atomic layer deposition (ALD) technique can be applied." This technique is based upon repeated separate saturating reactions of at least two different reactants with the surface, which leads to the controlled build-up of thin films via reaction of the second component with the chemisorbed residues of the first reactant. Aluminium nitride surfaces have been prepared on both alumina and silica supports by this method wherein reaction cycles of trimethylaluminium and ammonia have been performed with the respective supports, retaining their high surface areas." This method has been applied to the modification of the support composition for chromium catalysts supported on alumina." ... [Pg.98]

Laboratory investigation revealed that sodium, which was present in the support to the extent of several tenths of 1%, had a profound effect on stability and activity of the moiybdena-alumina catalyst. Over a period of time it was possible to alter the procedure for preparing the support on successive occasions until the catalyst contained much less than 0.1% sodium oxide. The reduction in sodium content of the support was immediately reflected in improved catalyst life. Ultimately the life was extended to 9 to 12 months before replacement. Various forms of alumina have been used as a support, including alumina gel and a stabilized alumina gel. Moiybdena-alumina catalyst has been employed exclusively in the eight commercial plants previously referred to. Today the majority of refiners who operate hydroformers are using molybdena on alumina gel as a catalyst. The molybdic oxide content of the catalyst is somewhat below 10%. Although similar to the original catalyst as far as chemical composition is concerned, it possesses superior activity and life. [Pg.46]

A classical 0.18% Pt supported on alumina catalyst was prepared by impregnating an aqueous solution of H2PtCl6 on y-alumina (Rh6ne-Poulenc, 240 m2 g 1). [Pg.203]

A parameter that determines the performances, as outlined also in patents, is the mean diameter of Pd or doped-Pd particles. This is also one of the claims in Headwaters Nanokinetix Inc. patents. It seems that a maximum in the activity/ selectivity as a function of the particle size is present. Figure 8.11 reports the effect of the Pd-particle size (Pd supported on alumina, prepared by deposition-precipitation method) in the direct synthesis of H202 in water at atmospheric pressure [77]. Low... [Pg.276]

Catalytic hydrodesulfurization (HDS) is a very important industrial process that involves removal of sulfur from crude oils by high-temperature ( 400°C) treatment with hydrogen over Co- or Ni-promoted Mo or W catalysts supported on alumina. In an attempt to determine the mechanism of this process, many transition metal complexes of thiophene, a sulfur-containing heterocycle that is particularly difficult to desulfurize, have been prepared and their reactivities studied in order to compare their behavior with those of the free thiophenes that give H2S and C4 hydrocarbons under HDS conditions (88ACR387). Thiophene can conceivably bind to the catalyst surface by either cr-donation via a sulfur electron pair or through a variety of -coordination modes involving the aromatic system... [Pg.147]

Among the supports that have been used in the preparation of supported transition metal nanoparticles are carbon, silica, alumina, titanium dioxide, and polymeric supports [57], and the most frequently used support is alumina [56], These supports normally produce an effect on the catalytic activity of the metallic nanoparticles supported on the amorphous material [60], In Chapter 3, different methods for the preparation of metallic catalysts supported on amorphous solids were described [61-71],... [Pg.430]

A common and well-known method to prepare silica membranes with molecular sieving properties is sol-gel coating [3-5], With this technique, microporous silica layers with a pore-size of about 0.5 nm are dip-coated on top of supported y-alumina membranes. The supports are porous a-alumina disks with pore diameters in the range from 100-200 nm. On top of these macroporous supports a 3 pm thick mesoporous y-alumina layer is coated, with a pore size of 3 nm. [Pg.105]


See other pages where Support preparation alumina is mentioned: [Pg.380]    [Pg.59]    [Pg.26]    [Pg.22]    [Pg.391]    [Pg.83]    [Pg.71]    [Pg.245]    [Pg.188]    [Pg.249]    [Pg.56]    [Pg.128]    [Pg.276]    [Pg.157]    [Pg.181]    [Pg.186]    [Pg.299]    [Pg.727]    [Pg.845]    [Pg.587]    [Pg.43]    [Pg.35]    [Pg.38]    [Pg.234]    [Pg.254]    [Pg.115]    [Pg.7]    [Pg.208]    [Pg.370]    [Pg.393]    [Pg.89]    [Pg.212]    [Pg.196]   
See also in sourсe #XX -- [ Pg.315 ]




SEARCH



Alumina support

Alumina supported

Alumina-supported tungsten oxide preparation

Preparation alumina-supported

Preparation alumina-supported

Preparation of Alumina Catalyst Supports

Support preparation

© 2024 chempedia.info