Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superoxide radical cations

Fig. 8.9 Possible mechanisms of the bioluminescence reaction of dinoflagellate luciferin, based on the results of the model study (Stojanovic and Kishi, 1994b Stojanovic, 1995). The luciferin might react with molecular oxygen to form the luciferin radical cation and superoxide radical anion (A), and the latter deproto-nates the radical cation at C.132 to form (B). The collapse of the radical pair might yield the excited state of the peroxide (C). Alternatively, luciferin might be directly oxygenated to give C, and C rearranges to give the excited state of the hydrate (D) by the CIEEL mechanism. Both C and D can be the light emitter. Fig. 8.9 Possible mechanisms of the bioluminescence reaction of dinoflagellate luciferin, based on the results of the model study (Stojanovic and Kishi, 1994b Stojanovic, 1995). The luciferin might react with molecular oxygen to form the luciferin radical cation and superoxide radical anion (A), and the latter deproto-nates the radical cation at C.132 to form (B). The collapse of the radical pair might yield the excited state of the peroxide (C). Alternatively, luciferin might be directly oxygenated to give C, and C rearranges to give the excited state of the hydrate (D) by the CIEEL mechanism. Both C and D can be the light emitter.
Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)... Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)...
In order to rationalize the complex reaction mixtures in these slurry reactions the authors suggested that irradiations of the oxygen CT complexes resulted in simultaneous formation of an epoxide and dioxetane36 (Fig. 34). The epoxide products were isolated only when pyridine was co-included in the zeolite during the reaction. Collapse of the 1,1-diarylethylene radical cation superoxide ion pair provides a reasonable explanation for the formation of the dioxetane, however, epoxide formation is more difficult to rationalize. However, we do point out that photochemical formation of oxygen atoms has previously been observed in other systems.141 All the other products were formed either thermally or photochemically from these two primary photoproducts (Fig. 34). The thermal (acid catalyzed) formation of 1,1-diphenylacetaldehyde from the epoxide during photooxygenation of 30 (Fig. 34) was independently verified by addition of an authentic sample of the epoxide to NaY. The formation of diphenylmethane in the reaction of 30 but not 31 is also consistent with the well-established facile (at 254 nm but not 366 or 420 nm) Norrish Type I... [Pg.259]

Hydroxyl radicals were generated radiolytically in NaO-saturated aqueous solutions of thiourea and tetramethylthiourea. Conductometric detection showed that HO and a dimeric radical cation were produced. The dimeric radical cation is formed by addition of a primary radical to a molecule of thiourea. In basic solution, the dimeric radical cation decays rapidly to a dimeric radical anion, which is formed via neutralization of the cation and subsequent deprotonation of the neutral dimeric radical (Scheme 16). This was not observed in tetramethylurea. These dimeric radical cations of thiourea and tetramethylurea are strong oxidants and readily oxidize the superoxide radical, phenolate ion, and azide ion. [Pg.205]

A type I one-electron photo-oxidation of methionine-methionine-containing peptides by triplet carboxybenzophenone in air-saturated aqueous solution has been reported the S+ radical cation that is formed then reacts with the other Met-S to form an S-S three-electron complex which reacts with superoxide radical anion before hydrolysis to Met(=0)-Met(=0) bis-sulfoxide. Alternatively, cyclization of the A-terminal NH2 on to the S can occur to give a three-electron S-N complex which can react with superoxide radical anion to give a cyclic sulfonium intermediate. [Pg.241]

In 1993, Blatter and Frei [34] extended the Aronovitch and Mazur [28] photo-oxidation into zeolitic media, which resulted in several distinctive advantages as described below. Irradiation in the visible region (633 nm) of zeolite NaY loaded with 2,3-dimethyl-2-butene, 16, and oxygen resulted in formation of allylic hydroperoxide, 17, and a small amount of acetone. The reaction was followed by in situ Fourier-transform infrared (FTlR) spectroscopy and the products were identified by comparison to authentic samples. The allylic hydroperoxide was stable at - 50°C but decomposed when the zeolite sample was warmed to 20°C [35]. In order to rationalize these observations, it was suggested that absorption of light by an alkene/Oi charge-transfer complex resulted in electron transfer to give an alkene radical cation-superoxide ion pair which collapses... [Pg.291]

Recently, detailed kinetic studies of the hybrid[type II , 02 - type RH] photo-oxidations of cyclohexane and cyclohexane-dn in both NaY and BaY have been reported. A kinetic isotope effect kulko of 5.7 was determined for X > 400 nm in BaY. This substantial isotope effect, which is nearly identical to the isotope effect on the kinetic acidity of cyclohexane, requires that the proton abstraction step, k, in the alkane radical cation superoxide ion pair be smaller than the back-electron transfer, k, to regenerate the charge-transfer complex (Fig. 18). If kpT were larger than k, the rate expression, Eq. (A) in Fig. 18, would be reduced to Eq. (B) and only a small isotope effect on et would be anticipated. [Pg.293]

An extremely interesting feature of these mechanisms is the fact that superoxide and the alkene radical cation are both formed in the reduction (Fig. 20) and also in the Frei oxidation (Fig. 19). In the Frei photo-oxidation, however, they are formed concurrently in a tight ion pair and collapse to product more rapidly than their diffusive separation. In the reduction (Fig. 20), the formation of the radical cation and superoxide occur in independent spatially separated events allowing the unimpeded diffusion of superoxide which precludes back-electron transfer (BET) and formation of oxidized products. The nongeminate formation of these two reactive species provides the time necessary for the radical cation to abstract a hydrogen atom from the solvent on its way to the reduced product. [Pg.296]

SrY < CaY) as observed in the uninitiated cyclohexane auto-oxidation. These workers believe that in both the gas- and liquid-phase photo-oxidations that electrostatically promoted electron transfer to generate a cyclohexane radical cation-superoxide ion pair occurs. However, only under liquid-phase conditions is there a continuous medium in which radical reactions can propagate themselves. [Pg.304]

Type 1 intrazeolite photooxygenation of alkenes has been also reported to give mainly allylic hydroperoxides (Scheme 42). In this process, the charge transfer band of the alkene—O2 complex within Na-Y was irradiated to form the alkene radical cation and superoxide ion. The radical ion pair in turn gives the allylic hydroperoxides via an allylic radical intermediate. On the other hand, for the Type II pathway, singlet molecular oxygen ( O2) is produced by energy transfer from the triplet excited state of a photosensitizer to 02. [Pg.871]

Legg and Hercules have shown that the reaction of superoxide with lucigenin results in chemiluminescence. A similar conclusion was reached by Fridovich and coworkers, who observed chemiluminescence upon the addition of lucigenin to the xanthine-xanthine oxidase system, which is known to produce 02 . In order to emit chemiluminescence, lucigenin must first be reduced by one electron to produce the radical cation 43 (Scheme 30). This species reacts with superoxide ion, producing the intermediate 1,2-dioxetane, whose decomposition is responsible for luminescence. ... [Pg.1250]

Electron spin resonance (ESR) methods have been used to observe the formation of the radical cations and dications of benzoll,2- 4,5- ]bis[l,2,3]trithiole 13 and benzo[l,2-4 4,5- ]bis[l,2,3]dithiazole 17, and the experimental results confirm the ab initio calculations performed <2003EJ04902, 1997JA12136>. ESR has also been used to confirm the formation of superoxides upon photolysis of aryl benzobisthiazoles and aryl benzobisoxazoles in the presence of molecular oxygen <2003MM4699>. [Pg.1141]

The key requirement for a SET step in the photocatalytic process seems to be the surface complexation of the substrate, according to an exponential dependence of the probability of electronic tunneling from the distance between the two redox centers [66]. However, as was pointed out in the preceding section on the key role of back reactions, the presence of a SET mechanism could be a disadvantage from an applicative point of view. If the formed SET intermediate (e.g., a radical cation) strongly adsorbs and/or does not transform irreversibly [e.g., by loss of CO from a carboxylic acid or fast reaction with other species (e.g., superoxide or oxygen)], it can act as a recombination center, lowering the overall photon efficiency of the photocatalytic process. [Pg.223]

Our radiolysis studies also indicate that phosphonates react quite slowly with the superoxide anion radical. Although our studies do not support the formation of radical cations as an initial oxidation step, we cannot rule out the possibility that radical cations are not involved in the oxidation of the C—P bond, as previously proposed [44], It is also possible that more electron-rich organphosphorus compounds or organophosphorus compounds in the adsorbed state may exhibit different redox and hydroxyl radical chemistries than what is observed under pulse radiolysis employing homogeneous conditions. [Pg.244]

Haber-Weiss reaction Hyaluronate of the bovine vitreous body was similarly protected by (Cu,Zn)-SOD, by catalase, and by peroxidase. The degradation of hyaluronate in the presence of ascorbate or of Fe cations was not inhibited by (Cu,Zn)-SOD The formation of OH radicals from H O and ascorbate, in the presence of traces of Fe-EDTA, was largely independent of superoxide radicals... [Pg.16]


See other pages where Superoxide radical cations is mentioned: [Pg.44]    [Pg.263]    [Pg.865]    [Pg.18]    [Pg.195]    [Pg.362]    [Pg.304]    [Pg.731]    [Pg.247]    [Pg.253]    [Pg.159]    [Pg.448]    [Pg.95]    [Pg.85]    [Pg.132]    [Pg.291]    [Pg.294]    [Pg.303]    [Pg.340]    [Pg.295]    [Pg.357]    [Pg.917]    [Pg.343]    [Pg.357]    [Pg.871]    [Pg.917]    [Pg.732]    [Pg.293]    [Pg.294]    [Pg.221]    [Pg.89]    [Pg.13]    [Pg.338]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



© 2024 chempedia.info