Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superacids compounds

The high acidity of superacids makes them extremely effective pro-tonating agents and catalysts. They also can activate a wide variety of extremely weakly basic compounds (nucleophiles) that previously could not be considered reactive in any practical way. Superacids such as fluoroantimonic or magic acid are capable of protonating not only TT-donor systems (aromatics, olefins, and acetylenes) but also what are called (T-donors, such as saturated hydrocarbons, including methane (CH4), the simplest parent saturated hydrocarbon. [Pg.100]

The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

Protonated methanes and their homologues and derivatives are experimentally indicated in superacidic chemistry by hydrogen-deuterium exchange experiments, as well as by core electron (ESCA) spectroscopy of their frozen matrixes. Some of their derivatives could even be isolated as crystalline compounds. In recent years, Schmidbaur has pre-... [Pg.157]

Nitrations can be performed in homogeneous media, using tetramethylene sulfone or nitromethane (nitroethane) as solvent. A large variety of aromatic compounds have been nitrated with nitronium salts in excellent yields in nonaqueous media. Sensitive compounds, otherwise easily hydroly2ed or oxidized by nitric acid, can be nitrated without secondary effects. Nitration of aromatic compounds is considered an irreversible reaction. However, the reversibihty of the reaction has been demonstrated in some cases, eg, 9-nitroanthracene, as well as pentamethylnitrobenzene transnitrate benzene, toluene, and mesitylene in the presence of superacids (158) (see Nitration). [Pg.561]

Indicate die structure of the ion you expect to be formed as the stable species when each of the following compounds is dissolved in superacid media at —30°C ... [Pg.340]

The use of antimony pentafluoride as a component of superacids for the generation of carbocations from various organic compounds was reviewed recently [16],... [Pg.945]

The basicities of amines, ethers, and carbonyl compounds are invariably decreased by fluonnation. 2,2,2-Tnfluoroethylamine (p f = 3.3 [61]) and C 5NH2 = -0.36 [62]) are about 10 times less basic than CH3CH2NH2 and CgH5NH2, respectively, and (CF3)2CHNH2 (p j, = 1 22 [71]) is over 10 times less basic than 1-C3H2NH2. The relative gas-phase acidities in Table 15 illustrate the large effect of fluonnation. Perfluoro-rerf-amines (R )3N and ethers R Rf have no basic character m solution [, 74], and CF3COCF3 is not protonated by superacids [72]. [Pg.989]

The Pictet-Spengler reaction is an acid-catalyzed intramolecular cyclization of an intermediate imine of 2-arylethylamine, formed by condensation with a carbonyl compound, to give 1,2,3,4-tetrahydroisoquinoline derivatives. This condensation reaction has been studied under acid-catalyzed and superacid-catalyzed conditions, and a linear correlation had been found between the rate of the reaction and the acidity of the reaction medium. Substrates with electron-donating substituents on the aromatic ring cyclize faster than the corresponding unsubstituted compounds, supporting the idea that the cyclization process is involved in the rate-determining step of the reaction. [Pg.470]

Stereoselectivity in the condensation reaction of 2-arylethylamines with carbonyl compounds to give 1,2,3,4-tetrahydroisoquinoline derivatives was somewhat dependent on whether acid catalysis or superacid catalysis was invoked. Particularly in the cases of 2-alkyl-N-benzylidene-2-phenethylamines, an enhanced stereoselectivity was observed with trifluorosulfonic acid (TFSA) as compared with the weaker acid, trifluoroacetic acid (TFA). Compound 43 was cyclized in the presence of TFA to give modest to good transicis product ratios. The analogous compound 44 was cyclized in the presence of TFSA to give slightly improved transicis product ratios. [Pg.475]

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts. Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov s rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With allqmes of the form RC=CH methyl ketones are formed almost exclusively, but with RC=CR both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid). ... [Pg.995]

It has been shown, however, that such catalysts may contain protons, either by design or because of the difficulty in removing all traces of moisture, and these protons have been shown to be superacidic with Hammett acidities up to —18. These protons will also play some role in the catalytic activity of these ionic liquids in practical situations. Ionic liquids in which superacidic protons have deliberately been generated by addition of small amounts of water, HCl or H2SO4 have been used to catalytically crack polyethene under relatively mild conditions. The main products are mixed C3-C5 alkanes, which would be a useful feedstock from waste polyethene recycling. In contrast to other cracking procedures no aromatics or alkenes are produced, although small amounts of polycyclic compounds are obtained. [Pg.157]

Although H2S is normally a weak acid, it functions as a base in a superacid such as HF/SbF5 in liquid HF. The H3S+ ion is generated, and although solid H3S+SbF5 has been obtained, there is very limited chemistry associated with this type of compound. [Pg.528]

The hydroxylation of C-H bonds by radicals, in contrast to the case of electrophilic oxidants, leads to alcohols without retention of stereochemical configuration. H202, activated by strong acids (superacids (277), HF-BF3 (272), A1C13 (213), and CF3COOH (214)) have been used for the hydroxylation of aromatic compounds. These acid-catalyzed hydroxylations cannot be applied for aliphatic reactants because the hydroxylated products are more reactive than the starting compounds and, hence, they are oxidized further. [Pg.106]

Two chapters in this volume describe the generation of carbocations and the characterization of their structure and reactivity in strikingly different milieu. The study of the reactions in water of persistent carbocations generated from aromatic and heteroaromatic compounds has long provided useful models for the reactions of DNA with reactive electrophiles. The chapter by Laali and Borosky on the formation of stable carbocations and onium ions in water describes correlations between structure-reactivity relationships, obtained from wholly chemical studies on these carbocations, and the carcinogenic potency of these carbocations. The landmark studies to characterize reactive carbocations under stable superacidic conditions led to the award of the 1994 Nobel Prize in Chemistry to George Olah. The chapter by Reddy and Prakash describes the creative extension of this earlier work to the study of extremely unstable carbodications under conditions where they show long lifetimes. The chapter provides a lucid description of modern experimental methods to characterize these unusual reactive intermediates and of ab initio calculations to model the results of experimental work. [Pg.297]


See other pages where Superacids compounds is mentioned: [Pg.16]    [Pg.16]    [Pg.98]    [Pg.147]    [Pg.147]    [Pg.167]    [Pg.195]    [Pg.137]    [Pg.559]    [Pg.102]    [Pg.941]    [Pg.570]    [Pg.418]    [Pg.419]    [Pg.705]    [Pg.708]    [Pg.815]    [Pg.1481]    [Pg.357]    [Pg.583]    [Pg.345]    [Pg.499]    [Pg.660]    [Pg.30]    [Pg.160]    [Pg.166]    [Pg.169]    [Pg.449]    [Pg.159]    [Pg.270]    [Pg.132]    [Pg.132]    [Pg.769]    [Pg.147]    [Pg.245]    [Pg.371]   
See also in sourсe #XX -- [ Pg.701 ]




SEARCH



Superacid

Superacidity

Superacids

© 2024 chempedia.info