Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid electron density

Octafluoroisobtttylene, whose double bond has reduced electron density and limited accessibility, reacts with sulfur tnoxidg under vigorous conditions The reaction mixture contains various components including bis-oi-tnfluorometh-yldifluoroethane-P-sultone, bis(a-trifluoromethyldifluoroethane)-(i-pyrosultone, the heptafluoroisobutenyl ester of fluorosulfonic acid, and the heptafluoroiso-butenyl ester of fluoropyrosulfomc acid [73] (equation 4)... [Pg.404]

Complexes 79 show several types of chemical reactions (87CCR229). Nucleophilic addition may proceed at the C2 and S atoms. In excess potassium cyanide, 79 (R = R = R" = R = H) forms mainly the allyl sulfide complex 82 (R = H, Nu = CN) (84JA2901). The reaction of sodium methylate, phenyl-, and 2-thienyllithium with 79 (R = R = r" = R = H) follows the same route. The fragment consisting of three coplanar carbon atoms is described as the allyl system over which the Tr-electron density is delocalized. The sulfur atom may participate in delocalization to some extent. Complex 82 (R = H, Nu = CN) may be proto-nated by hydrochloric acid to yield the product where the 2-cyanothiophene has been converted into 2,3-dihydro-2-cyanothiophene. The initial thiophene complex 79 (R = R = r" = R = H) reacts reversibly with tri-n-butylphosphine followed by the formation of 82 [R = H, Nu = P(n-Bu)3]. Less basic phosphines, such as methyldiphenylphosphine, add with much greater difficulty. The reaction of 79 (r2 = r3 = r4 = r5 = h) with the hydride anion [BH4, HFe(CO)4, HW(CO)J] followed by the formation of 82 (R = Nu, H) has also been studied in detail. When the hydride anion originates from HFe(CO)4, the process is complicated by the formation of side products 83 and 84. The 2-methylthiophene complex 79... [Pg.14]

Chemical entities discussed in this chapter as glycosyl donors share the principal structural feature C(anomeric)—sulfur atom bond with thioglycosides, discussed earlier. However, the electron density on the sulfur atom is diminished, and consequently its chemical reactivity differs considerably, because of substitution with electron-withdrawing groups such as carboxylic or phosphoric acid residues. This... [Pg.297]

The depletion width can play a role in analyte-induced modulation of the semiconductor PL [4]. As molecules adsorb onto the surface of the semiconductor, the dead-layer thickness can change, resulting in what can be described as a luminescent litmus test When Lewis bases adsorb onto the semiconductor surface, they donate electron density to the solid, which decreases the electric field and thus decreases the dead-layer thickness. The reduction in D causes an enhancement in the PL intensity from the semiconductor. Figures 2a and 2b present typical PL enhancements observed from an etched n-CdSe substrate Relative to a nitrogen reference ambient, adsorption of the Lewis bases ammonia and trimethylamine cause a reversible increase in PL intensity. In contrast, when Lewis acids adsorb onto the surface, they can withdraw additional electron density, causing the electric field to increase and the PL intensity to decrease. Such effects have been observed with gases like sulfur dioxide [5]. [Pg.347]

Lead s durability (its chemical inertness) and malleability make it useful in the construction industry. The inertness of lead under normal conditions can be traced to the passivation of its surface by oxides, chlorides, and sulfates. Passivated lead containers can be used for transporting hot concentrated sulfuric acid but not nitric acid, because lead nitrate is soluble. Another important property of lead is its high density, which makes it useful as a radiation shield because its numerous electrons absorb high-energy radiation. The main use of lead today is for the electrodes of rechargeable storage batteries (see Box 12.1). [Pg.833]

Analysis of the electron density indicates the presence of a large number of different interactions between the atoms of the inner part of the systems considered, for instance, chalcogenic interactions between sulfur (or selenium) and the opposed N atom anion. Special emphasis was put on acid-base equilibria (neutral/anion/ dianion). The relationship between the electron density and the Laplacian at the bcp indicate that these interactions are similar to those encountered in intermolecular interactions, to the point that they can be analyzed together. [Pg.193]

During the cationic polymerisation, e.g. with sulfuric acid, the process is the following at the initial stage of initiation, when organocyclosiloxanes interact with sulfuric acid, the acid proton attacks the oxygen atom of the siloxane cycle. As a result of the redistribution of the electron density, the =Si-0 bond breaks, opening the cycle and forming an active centre at the end of the chain ... [Pg.252]

Since sulfonation of pyridine iV-oxide is about as difficult as is that of pyridine itself and takes place at the 3-position,17 it has been assumed18 that, in fuming sulfuric acid, pyridine iV-oxide reacts only in the salt form (3), when the prediction is that substitution at C-3 would take place. It is, however, difficult to account for the fact that bromination, even at 110° in the presence of iron powder, does not occur.17 Bromination in chloroform solution in the presence of acetic anhydride and sodium acetate (when the O-acetate is the the probable substrate) take place readily, however, to give 3,5-dibromopyridine JV-oxide.19 The predicted order of nucleophilic reactivity, on the basis of both atom localization energies and ground-state v-electron density calculations, is 4 > 2 > 3. The same order is predicted for the nucleophilic substitution reactions of the salts of pyridine JV-oxide. In actual practice, iV-alkoxypyridinium derivatives undergo nucleophilic attack preferentially at C-2.20-23 The reaction of some pyridine iV-oxides with phosphorus pentachloride may involve the formation... [Pg.235]


See other pages where Sulfuric acid electron density is mentioned: [Pg.168]    [Pg.18]    [Pg.133]    [Pg.359]    [Pg.279]    [Pg.729]    [Pg.354]    [Pg.37]    [Pg.102]    [Pg.117]    [Pg.48]    [Pg.146]    [Pg.146]    [Pg.114]    [Pg.130]    [Pg.291]    [Pg.818]    [Pg.359]    [Pg.26]    [Pg.54]    [Pg.317]    [Pg.148]    [Pg.38]    [Pg.16]    [Pg.18]    [Pg.892]    [Pg.184]    [Pg.525]    [Pg.45]    [Pg.190]    [Pg.328]    [Pg.305]    [Pg.74]    [Pg.285]    [Pg.297]    [Pg.15]    [Pg.16]    [Pg.207]    [Pg.220]    [Pg.133]    [Pg.519]   
See also in sourсe #XX -- [ Pg.671 ]




SEARCH



Acid density

Density sulfuric acid

Sulfur density

© 2024 chempedia.info