Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur magnetic susceptibility

The ESR spectrum of the pyridazine radical anion, generated by the action of sodium or potassium, has been reported, and oxidation of 6-hydroxypyridazin-3(2//)-one with cerium(IV) sulfate in sulfuric acid results in an intense ESR spectrum (79TL2821). The self-diffusion coefficient and activation energy, the half-wave potential (-2.16 eV) magnetic susceptibility and room temperature fluorescence in-solution (Amax = 23 800cm life time 2.6 X 10 s) are reported. [Pg.8]

There will exist an equilibrium between the two states. If the ener between the two states, E, is of the order of kT, then the relative populations of the two states will vary with the temperature of the sample. In the Fe(III) dithiocarbamate series of complexes, [FeCRiRgdtcla], AE can be varied by suitable choice of substituents Ri and Rj. Although these are well removed from the FeSg molecular core, they can appreciably affect the electronic parameters of the central iron atom and of the surrounding crystal field of the sulfur atom by way of the conjugated system of the ligand (237). The results of the spin crossover are reflected in magnetic susceptibility data. [Pg.239]

Copper(II) complexes of 2,6-lutidylphenylketone thiosemicarbazone, 38, have been prepared from copper(II) chloride and copper(II) bromide [186]. Similar to 2-pyridyl thiosemicarbazones, 38-H coordinates via the ring nitrogen, the azomethine nitrogen and the thiol sulfur based on infrared spectral assignments. Magnetic susceptibilities and electron spin resonance spectra indicate dimeric complexes and both are formulated as [Cu(38-H)A]2 with bridging sulfur atoms. The electronic spectra of both halide complexes show band maxima at 14500-14200 cm with shoulders at 12100 cm S which is consistent with a square pyramidal stereochemistry for a dimeric copper(II) center. [Pg.27]

Grayish-white cubic crystals lustrous and brittle density 5.323 g/cm hardness 6.0 Mohs melts at 938.2°C vaporizes at 2,833°C a poor conductor of electricity electrical resistivity 47 microhm-cm dielectric constant 15.7 specific magnetic susceptibility (at 20°C) 0.122x10 insoluble in water, dilute acids and dilute alkalies attacked by concentrated nitric and sulfuric acids, aqua regia and fused alkalies. [Pg.314]

Occurs as a close-packed hexagonal alpha-form and a hody-centered cubic beta modification melting point 2,233°C vaporizes at 4,602°C electrical resistivity 35.5 microhm-cm at 20°C magnetic susceptibility 0.42xlCL6 emu/g at 25°C thermal neutron absorption cross section 105 barns/atom work function 3.5 eV modulus of elasticity 20x10 psi tensile strength 58,000 psi at 25°C insoluble in water, dilute mineral acids and nitric acid at all concentrations soluble in hydrofluoric acid, concentrated sulfuric acid and aqua regia. [Pg.330]

Metallic appearance in massive form, black to metallic color in powdered state or in electrodeposited form hexagonal crystal system density 20.53 g/cm3 hardness (Brinell) 250 melts at 3,180°C vaporizes at 5,627°C (estimated) vapor pressure 4.6x10- torr at 2,500°C electrical resistivity 19.14 microhm -cm modulus of elasticity 67x10 psi at 20°C specific magnetic susceptibility 0.369x10 thermal neutron absorption cross section 86 barns/atom superconductivity transition temperature 1.7°K insoluble in water and hydrochloric acid soluble in dilute nitric acid and hydrogen peroxide slightly soluble in sulfuric acid. [Pg.789]

A bright white metal soft and ductile body-centered cubic structure index of refraction 3.03 density 5.96 g/cm melts at 1,910°C vaporizes at 3,407°C electrical resistivity, 18.1 microhm-cm at 0°C and 20.1 microhm-cm at 25°C magnetic susceptibility 1.4x10 cgs units modulus of elasticity 18-19x10 psi shear modulus 6.73xl0 psi Poisson s ratio 0.36 thermal neutron absorption cross section 5 barns/atom insoluble in water, dilute sulfuric acid, and hydrochloric acid at all concentrations soluble in nitric acid, aqua regia, and concentrated sulfuric acid insoluble in alkalies. [Pg.962]

Finally, the data published by Gee (30) permit one to evaluate the sharpness of a transition involving floor temperature. Gee studied the temperature dependence of the viscosity of liquid sulfur and observed its sudden, steep increase at a critical temperature followed by its decrease at still higher temperatures. He developed the first, relatively complete theory of equilibrium polymerization of liquid sulfur (30) from which he estimated the chain length of the polymeric sulfur at various temperatures. His results have been recently confirmed by experimental measurements of magnetic susceptibility of the liquid sulphur (50) and its electron spin resonance (57). [Pg.486]

Figure 12-2 (a) Specific heat (A) and viscosity (B) of liquid sulfur, (b) Chain length (P) as a function of temperature, X from magnetic susceptibility measurements and from esr measurements. [Pg.501]


See other pages where Sulfur magnetic susceptibility is mentioned: [Pg.115]    [Pg.160]    [Pg.236]    [Pg.15]    [Pg.90]    [Pg.171]    [Pg.168]    [Pg.284]    [Pg.295]    [Pg.560]    [Pg.791]    [Pg.146]    [Pg.199]    [Pg.299]    [Pg.367]    [Pg.2]    [Pg.44]    [Pg.237]    [Pg.171]    [Pg.958]    [Pg.128]    [Pg.246]    [Pg.25]    [Pg.237]    [Pg.430]    [Pg.1048]    [Pg.1238]    [Pg.370]    [Pg.1969]    [Pg.1978]    [Pg.2144]    [Pg.4616]    [Pg.796]    [Pg.236]    [Pg.239]    [Pg.443]    [Pg.248]    [Pg.799]    [Pg.250]   
See also in sourсe #XX -- [ Pg.147 ]

See also in sourсe #XX -- [ Pg.147 ]

See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Magnet / magnetic susceptibility

Magnetic susceptability

Magnetic susceptibilities

Magnetism susceptibility

Magnets susceptibility

Sulfur susceptibility

© 2024 chempedia.info