Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur free radical

Sulfur free-radical chemistry is largely governed by the ability of sulfur to form three-electron bonded intermediates. A case in point is the complexation of a thiyl radical with a thiolate ion (for an analogy with the halide and other pseudohalide systems, see Chap. 5.2). These disulfide radical anions are characterized by strong absorptions in the UV-Vis (Adams et al. 1967). Complexation can occur both intermolecularly as well as intramolecularly. For GSH, for example, the stability constant of the disulfide radical anion is 2900 dm3 mol1 (Mezyk 1996a). The protonated disulfide radical anion is not stable, but such intermediates are known in the cases of the intramolecular complexes [reactions (39) and (40) Akhlaq and von Sonntag 1987]. [Pg.148]

The chapter is divided into four main parts Sec. 2 Thiols , Sec. 3 Thioethers , Sec. 4 Disulfides , and Sec. 5 Sulfoxides and Sulfonyls . They describe how sophisticated radiation-chemical techniques have been applied to address the role of sulfur-free radicals derived from these three classes of sulfur-containing compounds, in particular, in the biological environment. Important outputs from these studies are new directions for improving our knowledge of how sulfur-centered radicals interact with major cellular targets during oxidative stress, i.e. proteins, DNA, and lipids. [Pg.434]

As expected, the unsaturated hydrocarbon Cig 1 (unsaturation position at carbon 1) reacted much more than the /i-saturated hydrocarbons in the mixture. This is due to the higher reactivity of double bonds to sulfur-free radical attack. [Pg.41]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

Dialkyl peroxydicarboaates are used primarily as free-radical iaitiators for viayl monomer po1ymeri2ations (18,208). Dialkyl peroxydicarboaate decompositioas are accelerated by certaia metals, coaceatrated sulfuric acid, and amines (44). Violent decompositions can occur with neat or highly concentrated peroxides. As with most peroxides, they Hberate iodine from acidified iodides. In the presence of copper ions and suitable substrates, dialkyl peroxydicarbonates have been used to synthesi2e alkyl carbonates (44) ... [Pg.124]

Sulfochlorination of Paraffins. The sulfonation of paraffins using a mixture of sulfur dioxide and chlorine in the presence of light has been around since the 1930s and is known as the Reed reaction (123). This process is made possible by the use of free-radical chemistry and has had limited use in the United States. Other countries have had active research into process optimization (124,125). [Pg.80]

Orga.nic Chemistry. The organic chemistry of sulfur dioxide, particularly as it relates to food appHcations, has been discussed (246). Although no reaction takes place with saturated hydrocarbons at moderate temperatures, the simultaneous passage of sulfur dioxide and oxygen into an alkane in the presence of a free-radical initiator or ultraviolet light affords a sulfonic acid such as hexanesulfonic acid [13595-73-8]. This is the so-called sulfoxidation reaction (247) ... [Pg.144]

The reaction of sulfur dioxide with olefins under free-radical-cataly2ed conditions produces copolymers which, ia most cases, are of an alternating 1 1 type (249,250) ... [Pg.145]

Additionally, organotin mercaptides can act as antioxidants, as they can sequester free-radical degradation mechanisms (48). The one drawback of mercaptide-based tin stabilizers is the discoloration of the sulfur after exposure to uv-radiation. Special precautions or formulations need to be developed for outdoor apphcations. [Pg.6]

Thermally induced homolytic decomposition of peroxides and hydroperoxides to free radicals (eqs. 2—4) increases the rate of oxidation. Decomposition to nonradical species removes hydroperoxides as potential sources of oxidation initiators. Most peroxide decomposers are derived from divalent sulfur and trivalent phosphoms. [Pg.227]

The trans isomer is more reactive than the cis isomer ia 1,2-addition reactions (5). The cis and trans isomers also undergo ben2yne, C H, cycloaddition (6). The isomers dimerize to tetrachlorobutene ia the presence of organic peroxides. Photolysis of each isomer produces a different excited state (7,8). Oxidation of 1,2-dichloroethylene ia the presence of a free-radical iaitiator or concentrated sulfuric acid produces the corresponding epoxide [60336-63-2] which then rearranges to form chloroacetyl chloride [79-04-9] (9). [Pg.20]

Hydrogen hahdes normally add to form 1,2-dihaLides, though an abnormal addition of hydrogen bromide is known, leading to 3-bromo-l-chloropropane [109-70-6], the reaction is beUeved to proceed by a free-radical mechanism. Water can be added by treatment with sulfuric acid at ambient or lower temperatures, followed by dilution with water. The product is l-chloro-2-propanol [127-00-4]. [Pg.33]

Vulcanization. Generally this is carried out by the action of peroxides, which can cross-link the chains by abstracting hydrogen atoms from the methyl groups and allowing the resulting free radicals to couple into a cross-link. Some varieties of polysdoxanes contain some vinylmethyl siloxane units, which permit sulfur vulcanization at the double bonds. Some Hquid (short-chain) siHcones can form networks at room temperature by interaction between thek active end groups. [Pg.470]

The use of free-radical reactions for this mode of ring formation has received rather more attention. The preparation of benzo[Z)]thiophenes by pyrolysis of styryl sulfoxides or styryl sulfides undoubtedly proceeds via formation of styrylthiyl radicals and their subsequent intramolecular substitution (Scheme 18a) (75CC704). An analogous example involving an amino radical is provided by the conversion of iV-chloro-iV-methylphenylethylamine to iV-methylindoline on treatment with iron(II) sulfate in concentrated sulfuric acid (Scheme 18b)(66TL2531). [Pg.100]

A large proportion (30-90% in tropical waters) is absorbed by bacteria and oxidized to FfjS in order to allow the sulfur to be used by these organisms. Once in the atmosphere, DMS is oxidized by various free radicals such as hydroxyl and nitrate ions. In the presence of low concentrations of NO the hydroxyl reaction... [Pg.26]

The principal components of atmospheric chemical processes are hydrocarbons, oxides of nitrogen, oxides of sulfur, oxygenated hydrocarbons, ozone, and free radical intermediates. Solar radiation plays a crucial role in the generation of free radicals, whereas water vapor and temperature can influence particular chemical pathways. Table 12-4 lists a few of the components of each of these classes. Although more extensive tabulations may be found in "Atmospheric Chemical Compounds" (8), those listed in... [Pg.169]

Besides hydrogen, other atoms and groups are susceptible to abstraction by free radicals. The most important from a synthetic point of view are bromine, iodine, sulfur. [Pg.714]

D. Stalke, Polyimido Sulfur Anions [S(NR)n] Free Radicals and Coordination Behaviour, Proc. Ind. Acad. Sci. Chem. Sci., 112, 155 (2000). [Pg.14]

Den Hertog and Overhoff - observed that when pyridine in sulfuric acid is added to molten potassium sodium nitrate the 3-nitro derivative is formed at 300°C, whereas at 450°C 2-nitropyridme is the main product. The latter is probably a free-radical process. Schorigin and Toptschiew obtained 7-nitroquinoline by the action of nitrogen peroxide on quinoline at 100°C, possibly through the homolytic addition of NOa. Laville and Waters reported that during the decomposition of pernitrous acid in aqueous acetic acid, quinoline is nitrated in the 6- and 7-positions. They considered that the reaction proceeds as shown in Scheme 3. [Pg.173]

Another example of resort to heteroatoms to obtain both oral potency and a split between androgenic and anabolic activities Ls tiomestrone (99). Trienone, 98, prepared in much the same way as 23, undergoes sequential 1,6 and 1,4 conjugate addition of thioacetic acid under either irradiation or free radical catalysis to afford the compound containing two sulfur atoms. [Pg.175]


See other pages where Sulfur free radical is mentioned: [Pg.420]    [Pg.45]    [Pg.139]    [Pg.115]    [Pg.8]    [Pg.420]    [Pg.45]    [Pg.139]    [Pg.115]    [Pg.8]    [Pg.181]    [Pg.276]    [Pg.485]    [Pg.241]    [Pg.262]    [Pg.70]    [Pg.103]    [Pg.380]    [Pg.443]    [Pg.80]    [Pg.254]    [Pg.490]    [Pg.482]    [Pg.80]    [Pg.202]    [Pg.438]    [Pg.150]    [Pg.102]    [Pg.184]    [Pg.540]    [Pg.544]    [Pg.190]    [Pg.140]    [Pg.2373]    [Pg.176]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Free radicals sulfur dioxide

Free sulfur

Free-radical chemistry, sulfur

Sulfur Amino Acids, Vitamin E, and Free Radical Peroxidation

Sulfur radical

© 2024 chempedia.info