Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfoxides olefinic

Oxygen atom transfer reactions from metal-oxo species to phosphines (forming phosphine oxides), alkylsulfides (forming sulfoxides), olefins (forming epoxides), and other substrates depend on the relative X=0 bond dissociation energies in the metal-oxo starting material and the oxidized product the reactivity scale based on bond dissociation energies was proposed.62... [Pg.175]

Figure 5.17 Chiral hybrid sulfoxide-olefin ligands and their application in the Hayashi-Miyaura reaction... Figure 5.17 Chiral hybrid sulfoxide-olefin ligands and their application in the Hayashi-Miyaura reaction...
Rhodium Conjugate addition of aryl boronic acids to cyclohex-2-enone, catalysed by [Rh(diene)(OH)]2 complexes, afforded the corresponding product with the following enantioselectivities 96% ee with (508) ligand, 83% with (509), and 90% with (510). DFT calculations were used to shed light on the transition state structures and energies. " The sulfoxide-olefin ligand (511) exhibited >99% ee " ... [Pg.417]

Sulfoxides containing P-hydiogen atoms, eg, di-Abutylsulfoxide [2211 -92-9] react with strongly basic systems, eg, potassium /-butoxide, in DMSO by sulfenic acid elimination to produce olefins (eq.l2) (44) ... [Pg.109]

Extraction Solvent. Dimethyl sulfoxide is immiscible with alkanes but is a good solvent for most unsaturated and polar compounds. Thus, it can be used to separate olefins from paraffins (93). It is used in the Institute Fransais du Pntrole (IFF) process for extracting aromatic hydrocarbons from refinery streams (94). It is also used in the analytical procedure for determining polynuclear hydrocarbons in food additives (qv) of petroleum origin (95). [Pg.112]

The kinetics of formation and hydrolysis of /-C H OCl have been investigated (262). The chemistry of alkyl hypochlorites, /-C H OCl in particular, has been extensively explored (247). /-Butyl hypochlorite reacts with a variety of olefins via a photoinduced radical chain process to give good yields of aUyflc chlorides (263). Steroid alcohols can be oxidized and chlorinated with /-C H OCl to give good yields of ketosteroids and chlorosteroids (264) (see Steroids). /-Butyl hypochlorite is a more satisfactory reagent than HOCl for /V-chlorination of amines (265). Sulfides are oxidized in excellent yields to sulfoxides without concomitant formation of sulfones (266). 2-Amino-1, 4-quinones are rapidly chlorinated at room temperature chlorination occurs specifically at the position adjacent to the amino group (267). Anhydropenicillin is converted almost quantitatively to its 6-methoxy derivative by /-C H OCl in methanol (268). Reaction of unsaturated hydroperoxides with /-C H OCl provides monocyclic and bicycHc chloroalkyl 1,2-dioxolanes. [Pg.475]

The addition proceeds most smoothly with highly functionalized (more polar) steroids as seen in examples by Bernstein and others. The polar reaction conditions pose solubility problems for lipophilic androstane, cholestane and pregnane derivatives. Improved yields can be obtained in some cases by using dimethyl sulfoxide or t-butanol " as solvents and by using sodium A-bromobenzenesulfonamide or l,3-dibromo-5,5-dimethyl hydantoin (available from Arapahoe Chemicals) as a source of positive bromine. The addition of bromo acetate and bromo formate to steroid olefins has been studied to a limited extent. ... [Pg.17]

Sharpless and Masumune have applied the AE reaction on chiral allylic alcohols to prepare all 8 of the L-hexoses. ° AE reaction on allylic alcohol 52 provides the epoxy alcohol 53 in 92% yield and in >95% ee. Base catalyze Payne rearrangement followed by ring opening with phenyl thiolate provides diol 54. Protection of the diol is followed by oxidation of the sulfide to the sulfoxide via m-CPBA, Pummerer rearrangement to give the gm-acetoxy sulfide intermediate and finally reduction using Dibal to yield the desired aldehyde 56. Homer-Emmons olefination followed by reduction sets up the second substrate for the AE reaction. The AE reaction on optically active 57 is reagent... [Pg.59]

The stoichiometric reaction of lithium dialkylcuprates in diethyl ether with a-substituted /J-methylallyl sulfoxides and sulfones gives the /-substitution product with high regio- and E stereoselectivity82. The reaction provides a stereoselective method for the synthesis of trisubsti-tuted (TQ-olefins. [Pg.878]

Formation of C-C Bonds by Addition to Olefinic Double Bonds Enimines, Nitroalkenes, 4,5-Dihydrooxazoles, a,/MJnsaturated Sulfones, Sulfoxides and Sulfoximines... [Pg.1007]

As formal a, /i-unsaturated sulfones and sulfoxides, respectively, both thiirene dioxides (19) and thiirene oxides (18) should be capable, in principle, of undergoing cycloaddition reactions with either electron-rich olefins or serving as electrophilic dipolarophiles in 2 + 3 cycloadditions. The ultimate products in such cycloadditions are expected to be a consequence of rearrangements of the initially formed cycloadducts, and/or loss of sulfur dioxide (or sulfur monoxide) following the cycloaddition step, depending on the particular reaction conditions. The relative ease of the cycloaddition should provide some indication concerning the extent of the aromaticity in these systems2. [Pg.426]

Acyclic sulfoxides fragment into olefins and sulfenic acids on thermolysis97. Cyclic sulfoxides exhibit essentially the same ready mode of fragmentation106. [Pg.450]

In the reaction of 88 with /(-phenethyl bromide, l-phenethyl-3-phenylpropyl methyl sulfoxide and bis-3-phenylpropyl sulfoxide, besides 3-phenylpropyl methyl sulfoxide are obtained118. Sulfoxides, bearing a /1-hydrogen to the sulfmyl function, give olefins upon thermolysis. Utilizing this reaction, Trost and Bridges120 alkylated benzyl phenyl sulfoxide, 3,4-methylenedioxybenzyl phenyl sulfoxide, phenylthiomethyl phenyl sulfoxide, phenylsulfinylmethyl phenyl sulfoxide and cyanomethyl phenyl sulfoxide with alkyl, allyl and benzyl halides and subjected these sulfoxides to thermolysis, obtaining olefins in one-pot processes. [Pg.607]

Another version of the double [2,3]-sigmatropic rearrangement, involving the sequence sulfenate - sulfoxide - sulfenate, has also been observed. For example, an effective one-pot epimerization procedure of 17a-vinyl-l 7/i-hydroxysteroids to the rather inaccessible 17-epimers has been achieved by the use of such a rearrangement (equation 35)137. Thus treatment of alcohol 76a with benzenesulfenyl chloride afforded the sulfoxide 77 as a single isomer and E-geometry of the olefinic double bond. Exposure of 77 to trimethyl phosphite in refluxing methanol produced a mixture of 76b and 76a in a 73 27 ratio. [Pg.735]

The enantiomerically pure, doubly activated a, /j-olefinic sulfoxides 46-5095 98 undergo highly diastereoselective Diels-Alder cycloadditions with cyclopentadiene, and pyridyl vinylic sulfoxide 5199 reacts diastereoselectively with furan. It is noteworthy that olefins singly-activated by only a sulfinyl group are not effective partners in Diels-Alder cycloadditions, as we have found after many attempts and as has been reported recently98. [Pg.845]

The absolute stereochemistry at the sulfoxide sulfur atom in some /J-phenylsulfinyl radicals (prepared in situ by treating 2-bromo-3-phenylsulfinylbutanes with tributylstan-nane) controls the stereochemistry (i.e., cis vs. trans) of the olefinic products which are formed104. Implicit in this result is that loss of the sulfinyl group occurs more rapidly than rotation about C-2-C-3 of the intermediate radical105. [Pg.846]

Sulfoxides containing an a-chloro group 1191 or an a-trimethylsilyl group 1193 rearrange on silylation with TMSOTf 20/triethylamine or with LDA followed by TCS 14 to the olefins 1192 and 1194 in 86 and 75% yield and HMDSO 7 [22, 23], whereas a sulfoxide with an a-cyano or a-carbomethoxy group as in 1195 reacts... [Pg.192]

The Pacman catalyst selectively oxidized a broad range of organic substrates including sulfides to the corresponding sulfoxides and olefins to epoxides and ketones. However, cyclohexene gave a typical autoxidation product distribution yielding the allylic oxidation products 2-cyclohexene-l-ol (12%) and 2-cyclohexene-1-one (73%) and the epoxide with 15% yield [115]. [Pg.98]

In the presence of a suitably disposed /i-hydrogen—as in alkyl-substituted thiirane oxides such as 16c—an alternative, more facile pathway for thermal fragmentation is available . In such cases the thiirene oxides are thermally rearranged to the allylic sulfenic acid, 37, similarly to the thermolysis of larger cyclic and acyclic sulfoxides (see equation 9). In sharp contrast to this type of thiirane oxide, mono- and cis-disubstituted ones have no available hydrogen for abstraction and afford on thermolysis only olefins and sulfur monoxide . However, rapid thermolysis of thiirane oxides of type 16c at high temperatures (200-340 °C), rather than at room temperature or lower, afforded mixtures of cis- and trans-olefins with the concomitant extrusion of sulfur monoxide . The rationale proposed for all these observations is that thiirane oxides may thermally... [Pg.400]

The thermolysis of acyclic- and/or six- and larger ring sulfoxides to yield olefins and sulfenic acids is well documented . The formation of allylic sulfenic acids and thiosulfinates in the thermolysis of thiirane oxides containing hydrogen on the a-carbon of the ring substituent (which is syn to the S—O bond) has been discussed previously in terms of /i-elimination of hydrogen, which is facilitated by relief of strain in the three-membered ring (Section llI.C.l). [Pg.425]

Corey and Chaykovsky found that the dimsyl anion reacts with benzophenone and benzaldehyde to afford the corresponding 9-hydroxysulfoxides 109 and 110. Thermal decomposition of these jS-hydroxysulfoxides was shown to give a, -unsaturated sulfoxides or olefins . Thus, the reaction of dimsyl anion with benzophenone at 100 °C gave 1,1-diphenylethylene, diphenylmethane, 1,1-diphenylcyclopropane and diphenylacetaldehyde, besides 1, l-diphenyl-2-methylthioethylene . [Pg.612]


See other pages where Sulfoxides olefinic is mentioned: [Pg.361]    [Pg.80]    [Pg.264]    [Pg.265]    [Pg.287]    [Pg.361]    [Pg.80]    [Pg.264]    [Pg.265]    [Pg.287]    [Pg.103]    [Pg.108]    [Pg.119]    [Pg.872]    [Pg.183]    [Pg.44]    [Pg.276]    [Pg.278]    [Pg.216]    [Pg.400]    [Pg.425]    [Pg.729]    [Pg.750]    [Pg.48]    [Pg.78]    [Pg.161]    [Pg.185]    [Pg.263]    [Pg.146]    [Pg.729]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



© 2024 chempedia.info