Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters, sulfonate elimination reactions

Sulfonate esters are subject to the same limitations as alkyl halides Competition from elimination needs to be considered when planning a functional group transforma tion that requires an anionic nucleophile because tosylates undergo elimination reactions just as alkyl halides do... [Pg.353]

The most satisfactory method of dehydrating 12a-alcohols appears to be through the sulfonate esters Engel and coworkers have shown (ref. 236 and ref. cited therein) that treatment of such sulfonates with alumina gives A -compounds. The reaction appears to be subject to steric acceleration in that bulky IToc-substituents and cw-fused A-rings aid elimination, and that yields increase with increasing size of the sulfonate employed. [Pg.330]

An example of cleavage ol the sulfur-oxygen bond in trifluoromethane-sulfonic ester has been reported Tnfluororaethyl triflate reacts with neutral or anionic nucleophiles with elimination of carbonyl difluoride and formation of trifluoromethanesulfonyl fluoride [57] (equation 32) The mechanism of this reaction involves elimination of fluoride ion, which is a chain carrier in the substitution of fluorine for the trifluoromethoxy group... [Pg.214]

Conversion to p-toluenesulfonate esters (Section 8.14) Alcohols react with p-toluenesulfonyl chloride to give p-toluenesulfonate esters. Sulfonate esters are reactive substrates for nucleophilic substitution and elimination reactions. The p-toluenesulfonate group is often abbreviated —OTs. [Pg.636]

In a comparative study of fluorination of l,2 3,4-di-0-isopropyli-dene-6-O-p-tolylsulfonyl-a-D-galactopyranose with tetrabutylammonium fluoride in a variety of dipolar, aprotic solvents (as well as 1,2-eth-anediol, in which no reaction was observed), acetonitrile was found to give the highest proportion of substitution of the sulfonic esters relative to their elimination.106 Elimination is the major, competing reaction in these nucleophilic-substitution reactions, because of the high basicity and low nucleophilicity of the fluoride ion or, in terms of the... [Pg.219]

The first evidence that an elimination-addition mechanism could be important in nucleophilic substitution reactions of alkanesulfonyl derivatives was provided by the observation (Truce et al., 1964 Truce and Campbell, 1966 King and Durst, 1964, 1965) that when alkanesulfonyl chlorides RCH2S02C1 were treated in the presence of an alcohol R OD with a tertiary amine (usually Et3N) the product was a sulfonate ester RCHDS020R with exactly one atom of deuterium on the carbon alpha to the sulfonyl group. Had the ester been formed by a base-catalysed direct substitution reaction of R OD with the sulfonyl chloride there would have been no deuterium at the er-position. Had the deuterium been incorporated by a separate exchange reaction, either of the sulfonyl chloride before its reaction to form the ester, or of the ester subsequent to its formation, then the amount of deuterium incorporated would not have been uniformly one atom of D per molecule. The observed results are only consistent with the elimination-addition mechanism involving a sulfene intermediate shown in (201). Subsequent kinetic studies... [Pg.166]

The major advantages of this procedure over the enol sulfonate procedure lie in the availability of diethyl 2-chloro-2-cyclopropylethene-l,l-dicarboxylate from the corresponding acylmalonate and phosphorus oxychloride, and the fast, homogeneous, decarboxyl ative elimination reaction of the triethylamine salt of the half-ester in dry organic solvents. The conditions described here, with slight modifications (overnight treatment), have been used for a variety of g-chloro alkyl idene/aryl idene malonates as shown in Table I. [Pg.225]

Deoxyhalogeno sugars are susceptible to nucleophilic attack, leading either to displacement, elimination, or anhydro-ring formation. The ease of displacement decreases in the order I > Br> Cl > F the iodo and bromo derivatives have, therefore, been especially utilized in such reactions, although several reactions with chlorodeoxy sugars have now been reported as a result of the increased availability of these compounds. The approach delineated in Section 11,1 (see p. 227) for predicting the reactivity of sulfonic esters can be expected also to be applicable, in an approximate and qualitative way,... [Pg.281]

When an alkoxide ion is used as the nucleophile, the reaction is called a Williamson ether synthesis. Because the basicity of an alkoxide ion is comparable to that of hydroxide ion, much of the discussion about the use of hydroxide as a nucleophile also applies here. Thus, alkoxide ions react by the SN2 mechanism and are subject to the usual Sn2 limitations. They give good yields with primary alkyl halides and sulfonate esters but are usually not used with secondary and tertiary substrates because elimination reactions predominate. [Pg.352]

The sulfonyl halides (ArSOjCl) convert the alcohol into a sulfonate (ArSOjOR), which is a better leaving group than the hydroxyl group. This allows a range of nucleophilic substitutions to be carried out, many of which parallel those found with alkyl halides. Alkyl halides such as iodides are formed by the nucleophilic substitution of the sulfonate by an iodide ion. The reaction in this case proceeds with inversion of configuration. Treatment of the sulfonate esters with bases such as sodium methoxide or collidine (2,4,6-trimethylpyridine), or even just heating them, can lead to the elimination of toluene-4-sulfonic acid and the formation of an alkene. [Pg.40]

Elimination of sulfonic acids. Double bonds can be introduced into organic molecules by elimination of sulfonic acids from the corresponding sulfonic acid esters. The reaction proceeds particularly smoothly using DBN or DBU as reagent. Thus, treatment of 3-tosyloxyhexa-1,5-diyne (10) with excess DBN in ether at room temperature (1 hr.) affords a 40 60 mixture of cis- and (fu .v-hex-3-enc-l,5-diync (11 70%). ... [Pg.18]

Sodium sulfhydride (NaSH) is a much better reagent for the formation of thiols (mercaptans) from alkyl halides than H2S and is used much more often. It is easily prepared by bubbling H2S into an alkaline solution, but hydrosulfide on a supported polymer resin has also been used. " The reaction is most useful for primary halides. Secondary substrates give much lower yields, and the reaction fails completely for tertiary halides because elimination predominates. Sulfuric and sulfonic esters can be used instead of halides. Thioethers (RSR) are often side products. The conversion can also be accomplished under neutral conditions by treatment of a primary halide with F and a tin sulfide, such as PhsSnSSnPhs. An indirect method for the preparation of a thiol is the reaction of an alkyl halide with thiourea to give an isothiuronium salt (119), and subsequent treatment with alkali or a... [Pg.548]

The synthesis of stereodefined acyclic alkenes via 3-elimination reactions—such as (1) dehydration of alcohols, (2) base-induced eliminations of alkyl halides or sulfonates (tosyl or mesyl esters), and (3) Hofmann eliminations of quaternary ammonium salts—often suffers from a lack of regio- and stereoselectivity, producing mixtures of isomeric alkenes. [Pg.359]


See other pages where Esters, sulfonate elimination reactions is mentioned: [Pg.119]    [Pg.119]    [Pg.391]    [Pg.247]    [Pg.495]    [Pg.143]    [Pg.24]    [Pg.25]    [Pg.142]    [Pg.58]    [Pg.373]    [Pg.160]    [Pg.80]    [Pg.406]    [Pg.587]    [Pg.212]    [Pg.391]    [Pg.119]    [Pg.119]    [Pg.376]    [Pg.140]    [Pg.506]    [Pg.33]   
See also in sourсe #XX -- [ Pg.391 ]

See also in sourсe #XX -- [ Pg.391 ]




SEARCH



Elimination ester

Elimination reactions esters

Reaction sulfonates

Sulfonate esters

Sulfonation reaction

Sulfones elimination

Sulfonic esters

© 2024 chempedia.info