Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfides asymmetric epoxidations

Since cbiral sulfur ylides racemize rapidly, they are generally prepared in situ from chiral sulfides and halides. The first example of asymmetric epoxidation was reported in 1989, using camphor-derived chiral sulfonium ylides with moderate yields and ee (< 41%) Since then, much effort has been made in tbe asymmetric epoxidation using sucb a strategy without a significant breakthrough. In one example, the reaction between benzaldehyde and benzyl bromide in the presence of one equivalent of camphor-derived sulfide 47 furnished epoxide 48 in high diastereoselectivity (trans cis = 96 4) with moderate enantioselectivity in the case of the trans isomer (56% ee). ... [Pg.6]

Solladie-Cavallo s group used Eliel s oxathiane 1 (derived from pulegone) in asymmetric epoxidation (Scheme 1.3) [1]. This sulfide was initially benzylated to form a single diastereomer of the sulfonium salt 2. Epoxidation was then carried out at low temperature with the aid of sodium hydride to furnish diaryl epoxides 3 with high enantioselectivities, and with recovery of the chiral sulfide 1. [Pg.4]

The Aggarwal group has used chiral sulfide 7, derived from camphorsulfonyl chloride, in asymmetric epoxidation [4]. Firstly, they prefonned the salt 8 from either the bromide or the alcohol, and then formed the ylide in the presence of a range of carbonyl compounds. This process proved effective for the synthesis of aryl-aryl, aryl-heteroaryl, aryl-alkyl, and aryl-vinyl epoxides (Table 1.2, Entries 1-5). [Pg.4]

Table 1.2 Application of the chiral sulfide 7 in asymmetric epoxidations. Table 1.2 Application of the chiral sulfide 7 in asymmetric epoxidations.
Table 1.5 Use of a range of tosylhydrazone salts in catalytic asymmetric epoxidation of benzaldehyde. Na 1 mol% Rh2(OAc)4 V 0 5-20 mol% sulfide 7 hi o Ar ... Table 1.5 Use of a range of tosylhydrazone salts in catalytic asymmetric epoxidation of benzaldehyde. Na 1 mol% Rh2(OAc)4 V 0 5-20 mol% sulfide 7 hi o Ar ...
In the design of chiral sulfides for sulfur ylide-mediated asymmetric epoxidation of aldehydes, two factors are important. First, a single sulfur ylide should be produced. Otherwise, the diastereomeric sulfur ylides may react with aldehydes in different ways and thus cause a drop in stereoselectivity. This may be achieved by choosing a rigid cyclic structure to make one of the lone pairs more accessible than the other. Second, the structure should be amenable to structural modification in order to study the electronic and steric effects of the sulfur on the enantioselectivity of the epoxidation reaction. [Pg.249]

Asymmetric epoxidation of 10a under standard conditions yields the crystalline epoxy alcohol 2a in 95% ee (91% chemical yield). Treatment of 9a with thioanisol in 0.5N NaOH, in rerf-butyl alcohol solution, gives -after protection of the hydroxyl groups as benzyl ethers- the sulfide a (60% overall yield) through an epoxide ringopening process involving a Payne rearrangement. Since the sulfide could not be hydrolysed to the aldehyde 7a without epimerisation at the a-position, it was acetoxylated in 71% yield under the conditions shown in the synthetic sequence (8a... [Pg.383]

Scheme 8 summarizes the introduction of the missing carbon atoms and the diastereoselective epoxidation of the C /C double bond using a Sharpless asymmetric epoxidation (SAE) of the allylic alcohol 64. The primary alcohol 62 was converted into the aldehyde 63 which served as the starting material for a Horner-Wadsworth-Emmons (HWE) reaction to afford an E-configured tri-substituted double bond. The next steps introduced the sulfone moiety via a Mukaiyama redox condensation and a subsequent sulfide to sulfone oxidation. The sequence toward the allylic alcohol 64 was com-... [Pg.85]

Oxidation of chiral sulfonimines (R"S02N=CHAr)and chiral sulfamyl-imines (R RNS02N=CHAr)affords optically active 2-sulfonyloxaziridines and 2-sulfamyloxaziridines, respectively. These chiral, oxidizing reagents have been used in the asymmetric oxidation of sulfides to sulfoxides (15-68% ee), 11-13 selenides to selenoxides (8-9% ee] enolates to a-hydroxycarbonyl compounds (8-37% ee) and in the asymmetric epoxidation of alkenes (15-40% ee)... [Pg.241]

In their stereorational synthesis of (+)-[10.10] 61b, they reacted the epoxide 107 with a 1 1 3-butenylmagnesium bromide-cuprous iodide complex in dimethyl-sulfide-THF at low temperature. The predominant SN2 pathway gave the (+)-( )-allyl alcohol 108 whose Sharpless asymmetric epoxidation in dichloromethane at —23 °C for 10 min provided the corresponding epoxy alcohol and recovered (+)-(R)-allyl alcohol 108 (78 % yield and 95 % optical purity). The (R)-configuration was assigned following the Sharpless model61 for allylic alcohol epoxidation. [Pg.18]

Chiral (salen)Mn(III)Cl complexes are useful catalysts for the asymmetric epoxidation of isolated bonds. Jacobsen et al. used these catalysts for the asymmetric oxidation of aryl alkyl sulfides with unbuffered 30% hydrogen peroxide in acetonitrile [74]. The catalytic activity of these complexes was high (2-3 mol %), but the maximum enantioselectivity achieved was rather modest (68% ee for methyl o-bromophenyl sulfoxide). The chiral salen ligands used for the catalysts were based on 23 (Scheme 6C.9) bearing substituents at the ortho and meta positions of the phenol moiety. Because the structures of these ligands can easily be modified, substantia] improvements may well be made by changing the steric and electronic properties of the substituents. Katsuki et al. reported that cationic chiral (salen)Mn(III) complexes 24 and 25 were excellent catalysts (1 mol %) for the oxidation of sulfides with iodosylbenzene, which achieved excellent enantioselectivity [75,76]. The best result in this catalyst system was given by complex 24 in the formation of orthonitrophenyl methyl sulfoxide that was isolated in 94% yield and 94% ee [76]. [Pg.341]

The use of Mn-salen catalysts for asymmetric epoxidation has been reviewed.30 Oxo(salen)manganese(V) complexes, generated by the action of PhIO on the corresponding Mn(III) complexes, have been used to oxidize aryl methyl sulfides to sulfoxides.31 The first example of C—H bond oxidation by a (/i-oxo)mangancsc complex has been reported.32 The rate constants for the abstraction of H from dihydroanthracene correlate roughly with O—H bond strengths. [Pg.181]

The Aggarwal group also extended this concept to asymmetric epoxidation [214-216], Initial attempts using 20 mol% sulfide 218 and 10 mol% Rh2(OAc)4 resulted in the synthesis of epoxides in satisfactory yields (58-62%) but enantioselectivity was low (11% ee). A selected example is shown in Scheme 6.96 [214], When optically active sulfides, which are derived from camphor, are used in the presence of... [Pg.219]

The use of ylides derived from tellurium analogues of sulfides 2a and 2b for asymmetric epoxidation has been described [68, 69]. Preliminary experiments using 15 as catalyst gave high enantio- and diastereoselectivities, but poor yield (see Scheme 10.13). [Pg.369]

The oxidation of sulfides to sulfoxides can be made asymmetric by using one of the important reactions we introduced in the last chapter—the Sharpless asymmetric epoxidation. The French chemist Henri Kagan discovered in 1984 that, by treating a sulfide with the oxidant f-butyl hydroperoxide in the presence of Sharpless s chiral catalyst (Ti(OlPr)4 plus one enantiomer of diethyl tar- . , ... [Pg.1265]

The importance of the enantioselective chemical oxidation of sulfides has long been known. Nevertheless, it was not until the early 1980s that various approaches began to be developed simultaneously. Until very recently, two methods were used in the oxidation of sulfides46,47 those based on the modified Sharpless asymmetric epoxidation,48 and those based on chiral oxaziridines.49 While these methods lead... [Pg.66]

Using the clear homology of epoxidation of olefin and the oxidation of sulfide, Jacobsen and co-workers65 and Katsuki and co-workers66,67 applied their system developed for the asymmetric epoxidation of simple olefin to the asymmetric oxidation of prochiral sulfides. [Pg.72]

Asymmetric Epoxidation, Dihydroxylation and Sulfide Oxidation New Routes to Chiral Agrochemicals and Pharmaceuticals... [Pg.45]

Chiral sulfoxides. The Sharpless reagent lor asymmetric epoxidation also effects asymmetric oxidation of prochiral sulfides to sulfoxides. The most satisfactory results are obtained for the stoichiometry Ti(0-(-Pr)4/L DET/H20/(CH,),C00H = 1 2 1 2 for I equiv. of sulfide. In the series of alkyl p-tolyl sulfides, the (R)-sulfoxide is obtained in 41-90% ee the enantioselectivity is highest when the alkyl group is methyl. Methyl phenyl sulfide is oxidized to the (R)-sulfoxide in 81% ee. Even optically active dialkyl sulfoxides can be prepared in 50-71% ee the enantioselectivity is highest for methyl octyl sulfoxide. [Pg.92]

Terminal epoxides of high enantiopurity are among the most important chiral building blocks in enantioselective synthesis, because they are easily opened through nucleophilic substitution reactions. Furthermore, this procedure can be scaled to industrial levels with low catalyst loading. Chiral metal salen complexes have also been successfully applied to the asymmetric hydroxylation of C H bonds, asymmetric oxidation of sulfides, asymmetric aziridination of alkenes, and the asymmetric alkylation of keto esters to name a few. [Pg.272]


See other pages where Sulfides asymmetric epoxidations is mentioned: [Pg.313]    [Pg.826]    [Pg.826]    [Pg.50]    [Pg.5]    [Pg.244]    [Pg.166]    [Pg.209]    [Pg.245]    [Pg.322]    [Pg.114]    [Pg.116]    [Pg.107]    [Pg.113]    [Pg.122]    [Pg.368]    [Pg.51]    [Pg.403]    [Pg.403]    [Pg.95]    [Pg.199]    [Pg.669]    [Pg.102]   
See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Asymmetric epoxidation

Epoxidations, asymmetric

Epoxides asymmetric epoxidation

Sulfides asymmetric

© 2024 chempedia.info